U.G. 3rd Semester Examination - 2020 MATHEMATICS [HONOURS]

Skill Enhancement Course (SEC)

Course Code: MATH-H-SEC-T-1A&B

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Symbols have their usual meaning.

Answer all the questions from selected Option.

OPTION - A

MATH-H-SEC-T-1A

1. Answer any **five** questions:

- $3 \times 5 = 15$
- a) Write the following sentence using symbolic logic: "The sum of two numbers is even if and only if either both numbers are even or both numbers are odd".
- b) Write truth table of conditional and biconditional statements.
- c) What is tautology? Give an example with justification.
- d) Translate the following sentence into symbols, first using no universal quantifiers, then using

[Turn over]

- no existential quantifiers: "Every number is either negative or has a square root".
- e) A relation R is defined on the set \mathbb{Z} by "aRb if and only if a-b is divisible by 5" for $a,b \in \mathbb{Z}$. Verify whether R is an equivalent relation.
- f) Give an example of a relation R on Z such that R is symmetric and transitive but not reflexive with justification.
- g) Define a lattice and give an example with justification.
- h) Prove for the sets U and V that $U \subseteq V$ if and only if $U \cup V = V$.
- 2. Answer any **five** questions:

 $5\times 5=25$

- a) Lat A be a statement form in which the statement variables p_i, p_2, p_n appear, and let $A_i, A_2, ..., A_n$ be statement forms. If A is a tautology, then show that the statement form B, obtained from A by replacing each occurrence of p_i by A_i $(1 \le i \le n)$ throughout, is also a tautology.
- Prove or disprove that $(\sim(pq))$ is logically equivalent to $((\sim p)(\sim q))$.
- c) If B_1 is a statement form arising from the statement form A_1 by substituting the statement form B for one or more occurrence of the statement form A in A_1 , and if B is logically

- equivalent to A, then prove that B_I is logically equivalent to A_I .
- d) Show that the pairs $\{\sim, \}, \{\sim, \}$ and $\{\sim, \rightarrow\}$ are adequate sets of connectives.
- e) Let R be an equivalence relation on a set S and a,b ∈ S. Then prove that Cl(a)=Cl(b) if and only if aRb.
- f) For any sets A, B and C , prove $A\Delta(B\Delta C) = (A\Delta B)\Delta C.$
- g) Define a poset with an example. Let (S, \le) be a poset. If a, b \in S have a least upper bound, then show that it is unique.
- h) For any sets A, B and C prove $A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \text{ and }$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$

OPTION - B

MATH-H-SEC-T-1B

1. Answer any **five** questions:

 $3 \times 5 = 15$

- a) Explain the use of graphics API.
- b) What are the drawbacks of vector scan?
- c) How many types of LCDs are there? Briefly discuss.
- d) Differentiate between orthographic and oblique parallel projection.
- e) List the properties of Bezier Curves.
- f) Briefly explain perspective projection technique.
- g) Explain the concept of vanishing point with example.
- 2. Answer any **five** questions:

 $5\times 5=25$

- a) Explain the working principle of CRT display.
- b) What is random scan? What is the size of the frame buffer of a system with resolution 640×480 to store 12 bits per pixel? 2+3
- c) Explain the Bresenham's Line drawing algorithm.
- d) Explain an algorithm for polygon clipping.

- e) A triangle is defined with co-ordinates A(20,10), B(60,10) and C(30,70). Write the co-ordinates of the vertices after each of the following transformations. Do all the transformations on the original triangle.
 - i) Scale the triangle about vertex A with scaling factors $S_x=2$ and $S_y=1/2$.
 - ii) Reflect the triangle about the line y=x.

3+2

- f) Write a short note on raytracing.
- g) Discuss some applications of computer graphics.
