U.G. 3rd Semester Examination - 2020 MATHEMATICS [PROGRAMME]

Course Code: MATH-G-CC-T-03

Full Marks: 60 Time: $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Symbols and notations have their usual meanings.

1. Answer any **ten** questions:

 $2 \times 10 = 20$

- a) Give an example of a countable (infinite) set with justification.
- b) Find Supremum and infimum of the set

$$\left\{ (-1)^n \cdot \frac{n}{n+1} : n \in \mathbf{N} \right\}$$

- c) Using the completeness property of **R**, prove that the set **N** of all natural numbers is unbounded above.
- d) Show that finite subsets of real numbers have no limit points.
- e) Using Bolzano-Weierstrass theorem, show that of the $S = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$.

[Turn over]

- f) Give an example of a sequence which is bounded, but not convergent.
- g) Show that every subsequence of a convergent sequence is convergent.
- h) Give an example of a monotonically increasing sequence which is not convergent. When does a monotonically increasing sequence converge?
- Does a series of positive terms neither convergent nor divergent? Give reason to your answer.
- j) Define *p*-series with its convergence criteria.
- k) Show that absolutely convergent series is convergent.
- 1) Give an example of a conditional convergent series with justification.
- m) What is the difference between pointwise convergence and uniformly convergent sequence of functions?
- n) State M_n -test for a series of functions.
- o) Define the radius of convergence of power series.
- 2. Answer any **four** questions: $5 \times 4 = 20$
 - State and prove Archimedean property of real numbers.

- b) If A and B are closed sets, then prove that their union and intersection both closed.
- c) Show that $\lim_{n\to\infty}\left[\frac{1}{\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+2}}+\cdots+\frac{1}{\sqrt{n^2+n}}\right]=1.$
- d) What is a Cauchy sequence? Show that every convergent sequence of real numbers is a Cauchy sequence. Does the converse true?
- e) If a series is convergent, then show that the sequence of the terms of the series converges to zero. Does the converse true?
- f) Test the convergence of the series

$$\sum_{n=1}^{\infty} \frac{n^{n^2}}{(n+1)^{n^2}}$$

g) Using Abel's test show that the series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n$$

is uniformly convergent on [0,1].

- 3. Answer any **two** questions: $10 \times 2 = 20$
 - a) State and prove Bolzano-Weierstrass theorem on the limit of point set. Give examples of (i) a closed set that is not open, (ii) a open set that is not closed, (iii) a set that is neither open nor

closed, (iv) an unbounded set with uncountable number of limit points, (v) a bounded set with only one limit point. 5+1+1+1+1

- b) Prove that every sequence of real numbers has a monotonic subsequence. Prove that every convergent sequence is bounded, but not converse true.

 5+(3+2)
- Discuss the convergence of Geometric series.
 Define an alternating series. State for Leibnitz's test for alternating series. Show that the series

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

is convergent.

5+1+2+2

d) Using M_n -test, show that the sequence $\left\{\frac{x}{nx+1}\right\}$ converges uniformly to zero in [0,1]. State and prove Weierstrass' M-test for the convergence of series of functions.
