363/Phs.

UG/3rd Sem/PHYG-CC-3(A-C)-T/20

U.G. 3rd Semester Examination - 2020 PHYSICS

[PROGRAMME]

Course Code: PHYG-CC-3(A-C)

Full Marks: 40

Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer all the questions from Selected Option.

OPTION-A

PHYG-CC-T-3A

(Mathematical Physics-III)

GROUP-A

1. Answer any **five** questions:

 $2 \times 5 = 10$

- a) Determine whether (1/z) is analytic or not.
- b) Prove that $z = \pm i$ are branch points of $(z^2 + 1)^{\frac{1}{3}}$.
- c) Evaluate the integral $\int_C |z| dz$ where C is the straight line from z = -i to z = i.

- d) Find the residue of tan z at its pole.
- e) Prove L(1) = 1/s.
- f) State Residue theorem.
- g) Write down the Convolution Theorem on Fourier Transform
- h) Define isolated singularity of a complex function.

GROUP-B

2. Answer any **two** questions:

 $5 \times 2 = 10$

- a) Show that the function $e^x(\cos y + i \sin y)$ is an analytic function. Find its derivative.
- b) Verify, Cauchy theorem by integrating e^{iz} along the boundary of the triangle with the vertices at the points 1 + i, -1 + i and -1 i.
- c) Find the Laplace transform of cos²t.
- d) Find the Fourier cosine transform of

$$f(x) = e^{-2x} + 4e^{-3x}.$$

GROUP-C

- 3. Answer any **two** questions: $10 \times 2 = 20$
 - a) Show that the real and imaginary parts of the function $w = \log z$ satisfy the Cauchy-Riemann equations when z is not zero. Find its derivative. Find an analytic function $f(z) = u(r, \theta) + iv(r, \theta)$ such that $V(r, \theta) = r^2 \cos^2 \theta r \cos \theta + 2$.

5+5

b) Determine the poles of the following function. Find the order of each pole.

$$\frac{z-3}{(z-2)(z+1)^2}$$

Evaluate the following complex integral $\oint_C \frac{z-1}{(z-2)(z+1)^2}$ where *c* is the circle |z-i|=2.

c) Prove $L(t^n) = \frac{n!}{s^{n+1}}$. Find the Laplace transforms of the following: $t \sin 2t$. 5+5

d) Find the Fourier sine and cosine transform of $ae^{-\alpha x} + be^{-\beta x}$. 5+5

OPTION-B

PHYG-CC-T-3B

(Elements of Modern Physics)

GROUP-A

1. Answer any **five** questions:

 $2 \times 5 = 10$

- a) Define mean (or average) life of a radioactive nuclide.
- b) Give example of isomer, isotope and isotone.
- c) Write full form of LASER.
- d) What is Bohr magneton? Express its value in S.I unit.
- e) What is the energy in Joule of a photon of wavelength 6000 Å?
- f) Write Einstein's photoelectric equation. Explaining the terms used.
- g) Find an expression for time and energy uncertainty relation.
- h) What is the frequency of a photon having energy 100 eV?

GROUP-B

- 2. Answer any **two** questions: $5 \times 2 = 10$
 - a) Show that group velocity and phase velocity related as $v_g = v_p \lambda \frac{dv_p}{d\lambda}$, terms being as usual. Define half-life of a radioactive nuclide. Derive a relation between half-life and radioactive constant.
 - b) What is de Broglie hypothesis? Show that for relativistic free particle group velocity is equal to particle velocity. 2+3
 - c) Explain the terms 'mass defect' and 'packing fraction'. With figure (graph) explain the variation of packing fraction with mass number.

 2+3
 - d) Find the probability current density of $\psi = Ae^{ikx}$. Also find the eigen function of the operator given by $\left(x + \frac{d}{dx}\right)$.

GROUP-C

- 3. Answer any **two** questions: $10 \times 2 = 20$
 - a) Write down the time dependent Schrödinger equation. Explain each term. Explain the existence of stationary orbits in Bohr's theory on the basis of matter waves. A particle of mass

m move(i.e confined) in an infinite one dimensional square (rectangular) well its potential is given by

$$V=0$$
, for $0 < x < a$
= ∞ , for $x \le 0$ and $x \ge a$

Show that the energy eigen value is given by $E_n = \frac{n^2 \pi^2 h^2}{2ma^2}$, terms being as usual.

1+1+3+5

- b) What is population inversion? What is pumping? Explain optical pumping with a suitable example. What do you mean by Einstein's A and B coefficients? Establish relation between Einstein's A and B coefficient. 1+1+2+2+4
- what are the basic similarities between a liquid drop and an atomic nucleus? Write Weizsacker's mass formula and explain each term involved. Which nuclei you would expect to be more stable between 3Li⁷ and 3Li⁸? 3+3+4
- d) Using energy-momentum conservation, derive an expression for wavelength shift of photons as a function of the angle of scattering for Compton effect. Distinguish between nuclear fission and nuclear fusion. Find the total angular momentum and parity for the ground state of 3Al²⁷.

OPTION-C

PHYG-CC-T-3C

(Analog Systems & Applications) GROUP-A

Answer any **five** questions:

 $2 \times 5 = 10$

- What are p-type and n-type semiconductors?
- Draw the energy band diagram for p-type and b) n-type semiconductors.
- Draw the circuit diagram of a forward and reverse biased p-n junction diode.
- Define dynamic resistance of a p-n junction diode
- Define the current gain factors Alpha (α) and Beta (β) ?
- f) Define open loop gain and closed loop gain.
- Define Barkhausen criterion of oscillation. **g**)
- h) What is the CMRR of an OPAMP?

GROUP-B

2. Answer any **two** questions: $5 \times 2 = 10$

What is drift and diffusion current in semiconductors? Calculate the drift and diffusion current density in semiconductors.

2 + 3

- Find out the relation between alpha (α) and beta (β) . A transistor has a collector current of 5 mA and a base current of 20 µA. Find the values of α and β . 3+2
- Calculate the Q point in fixed bias configuration. Draw the h-parameter equivalent circuit of a basic CE amplifier and calculate the current 2+1+2gain.
- Define Class A amplifier. Draw the frequency response curve of a RC coupled amplifier. Explain the Mid-frequency range. 1+1+3

GROUP-C

- 3. Answer any **two** questions: $10 \times 2 = 20$
 - Draw the circuit diagram of a half wave rectifier and calculate its efficiency of rectification. Explain how a transistor can act
 - as an amplifier. What is a Zener diode? Explain its use as a voltage regulator. 5+2+1+2
 - b) Draw the circuit arrangement for drawing the characteristic curves of an *npn* transistor in CB mode. Draw the input and the output characteristic curves. Discuss about the different operating regions in the output characteristics curve. What is early effect?

2+2+5+1

- c) What are the effects of negative feedback?

 Describe RC phase shift oscillator with a circuit diagram and find the expression for the frequency of oscillation.

 2+3+5
- d) What are the characteristics of an ideal OPAMP?

 Calculate the gain of an inverting and noninverting amplifier. Draw a circuit diagram of
 an adder using OPAMP and find an expression
 of the output voltage.

 2+5+3
