Full Marks: CC – T – 01 = 10, CC – T – 02 = 10 [For students of Mathematics Honours]

HGE – T – 1 = 10 [For students opting for Mathematics as GE]

FOR MATHEMATICS HONOURS STUDENTS (MTMH) [USE SEPARATE ANSWER-SCRIPTS FOR CC-T-01 & CC-T-02]

FOR MATHEMATICS HONOURS STUDENTS (MIMH) [USE SEPARATE ANSWER-SCRIPTS FOR CC-1-01 & CC-1-02]		
	CC-T-01	10
		10
	Group – A [Matrices & Linear Algebra] Answer any ONE question:	05
1.	If $y = (\sin^{-1} x)^2$, prove that, $(1 - x^2)y_{n+2} - (2n + 1)xy_{n+1} - n^2y_n = 0$	
	(Where the symbols have their usual meaning).	
2.	If $I_n = \int_0^1 x^n \tan^{-1} x dx$, $(n > 2$, is a positive integer),	
	then prove that, $(n + 1)I_n + (n - 1)I_{n-2} = \frac{\pi}{2} - \frac{1}{n}$.	
	Group – B [Geometry]	02
	Answer any ONE question:	
3.	What does the equation $3x^2 - 4xy + 25y^2 = 0$ become when the axes turned through an	
4.	angle $\tan^{-1} 2$. Find the radius of the circle $x^2 + y^2 + z^2 = 49$, $2x - y + 3z = 14$.	
	Group – C [Differential Equations]	03
	Answer any ONE question:	
5.	Find the differential equation of all parabolas having origin as vertex and focus on y -axis.	
6.	Solve, $\frac{dy}{dx} + \frac{y}{x} = y^2$.	
	CC-T-02	10
	Group – A [Algebra – units 1 & 2]	05
	Answer any ONE question:	
1.	If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c = 0$, $a, b, c \in \mathbb{R}$ have a common root then find $a: b: c$.	2+3
1.	If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c = 0$, $a, b, c \in \mathbb{R}$ have a common root then	2+3
1. 2.	If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c = 0$, $a, b, c \in \mathbb{R}$ have a common root then find $a: b: c$. If a, b, c are the sides of a triangle, show that $\frac{1}{2} < \frac{ab+bc+ca}{a^2+b^2+c^{2}} < 1$. Use strong principle of mathematical induction to show that,	2+3 3+2
	If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c = 0$, $a, b, c \in \mathbb{R}$ have a common root then find $a: b: c$. If a, b, c are the sides of a triangle, show that $\frac{1}{2} < \frac{ab+bc+ca}{a^2+b^2+c^{2}} < 1$.	
	If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c = 0$, $a, b, c \in \mathbb{R}$ have a common root then find $a: b: c$. If a, b, c are the sides of a triangle, show that $\frac{1}{2} < \frac{ab+bc+ca}{a^2+b^2+c^{2}} < 1$. Use strong principle of mathematical induction to show that,	
	If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c = 0$, $a, b, c \in \mathbb{R}$ have a common root then find $a: b: c$. If a, b, c are the sides of a triangle, show that $\frac{1}{2} < \frac{ab+bc+ca}{a^2+b^2+c^{2}} < 1$. Use strong principle of mathematical induction to show that, $(3 + \sqrt{7})^n + (3 - \sqrt{7})^n$ is an even integer for all $n \in \mathbb{N}$.	
	If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c = 0$, $a, b, c \in \mathbb{R}$ have a common root then find $a: b: c$. If a, b, c are the sides of a triangle, show that $\frac{1}{2} < \frac{ab+bc+ca}{a^2+b^2+c^{-2}} < 1$. Use strong principle of mathematical induction to show that, $(3 + \sqrt{7})^n + (3 - \sqrt{7})^n$ is an even integer for all $n \in \mathbb{N}$. Show that the product of all values $(1 + \sqrt{3}i)^{\frac{3}{4}}$ is 8.	3+2
	If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c = 0$, $a, b, c \in \mathbb{R}$ have a common root then find $a: b: c$. If a, b, c are the sides of a triangle, show that $\frac{1}{2} < \frac{ab+bc+ca}{a^2+b^2+c^{2}} < 1$. Use strong principle of mathematical induction to show that, $(3 + \sqrt{7})^n + (3 - \sqrt{7})^n$ is an even integer for all $n \in \mathbb{N}$. Show that the product of all values $(1 + \sqrt{3}i)^{\frac{3}{4}}$ is 8. Group - B [Algebra - units 3 & 4]	3+2
2.	If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c = 0$, $a, b, c \in \mathbb{R}$ have a common root then find $a: b: c$. If a, b, c are the sides of a triangle, show that $\frac{1}{2} < \frac{ab+bc+ca}{a^2+b^2+c^{2}} < 1$. Use strong principle of mathematical induction to show that, $(3 + \sqrt{7})^n + (3 - \sqrt{7})^n$ is an even integer for all $n \in \mathbb{N}$. Show that the product of all values $(1 + \sqrt{3}i)^{\frac{3}{4}}$ is 8. Group – B [Algebra – units 3 & 4] Answer any ONE question:	3+2
2.	If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c = 0$, $a, b, c \in \mathbb{R}$ have a common root then find $a: b: c$. If a, b, c are the sides of a triangle, show that $\frac{1}{2} < \frac{ab+bc+ca}{a^2+b^2+c^{-2}} < 1$. Use strong principle of mathematical induction to show that, $(3 + \sqrt{7})^n + (3 - \sqrt{7})^n$ is an even integer for all $n \in \mathbb{N}$. Show that the product of all values $(1 + \sqrt{3}i)^{\frac{3}{4}}$ is 8. Group – B [Algebra – units 3 & 4] <u>Answer any ONE question:</u> Determine the conditions for which the following system of equations has	3+2
2.	If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c = 0$, $a, b, c \in \mathbb{R}$ have a common root then find $a: b: c$. If a, b, c are the sides of a triangle, show that $\frac{1}{2} < \frac{ab+bc+ca}{a^2+b^2+c^2} < 1$. Use strong principle of mathematical induction to show that, $(3 + \sqrt{7})^n + (3 - \sqrt{7})^n$ is an even integer for all $n \in \mathbb{N}$. Show that the product of all values $(1 + \sqrt{3}i)^{\frac{3}{4}}$ is 8. Group - B [Algebra - units 3 & 4] <u>Answer any ONE question:</u> Determine the conditions for which the following system of equations has (a) only one solution; (b) no solution; (c) infinitely many solutions. x + y + z = 1 x + 2y - z = b	3+2
2.	If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c = 0$, $a, b, c \in \mathbb{R}$ have a common root then find $a: b: c$. If a, b, c are the sides of a triangle, show that $\frac{1}{2} < \frac{ab+bc+ca}{a^2+b^2+c^2} < 1$. Use strong principle of mathematical induction to show that, $(3 + \sqrt{7})^n + (3 - \sqrt{7})^n$ is an even integer for all $n \in \mathbb{N}$. Show that the product of all values $(1 + \sqrt{3}i)^{\frac{3}{4}}$ is 8. Group - B [Algebra - units 3 & 4] <u>Answer any ONE question:</u> Determine the conditions for which the following system of equations has (a) only one solution; (b) no solution; (c) infinitely many solutions. x + y + z = 1	3+2
2.	If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c = 0$, $a, b, c \in \mathbb{R}$ have a common root then find $a: b: c$. If a, b, c are the sides of a triangle, show that $\frac{1}{2} < \frac{ab+bc+ca}{a^2+b^2+c^2} < 1$. Use strong principle of mathematical induction to show that, $(3 + \sqrt{7})^n + (3 - \sqrt{7})^n$ is an even integer for all $n \in \mathbb{N}$. Show that the product of all values $(1 + \sqrt{3}i)^{\frac{3}{4}}$ is 8. Group - B [Algebra - units 3 & 4] <u>Answer any ONE question:</u> Determine the conditions for which the following system of equations has (a) only one solution; (b) no solution; (c) infinitely many solutions. x + y + z = 1 x + 2y - z = b	3+2
2. 3.	If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c = 0$, $a, b, c \in \mathbb{R}$ have a common root then find $a: b: c$. If a, b, c are the sides of a triangle, show that $\frac{1}{2} < \frac{ab+bc+ca}{a^2+b^2+c^{+2}} < 1$. Use strong principle of mathematical induction to show that, $(3 + \sqrt{7})^n + (3 - \sqrt{7})^n$ is an even integer for all $n \in \mathbb{N}$. Show that the product of all values $(1 + \sqrt{3}i)^{\frac{3}{4}}$ is 8. Group - B [Algebra - units 3 & 4] <u>Answer any ONE question:</u> Determine the conditions for which the following system of equations has (a) only one solution; (b) no solution; (c) infinitely many solutions. x + y + z = 1 x + 2y - z = b $5x + 7y + az = b^2$	3+2 05
2. 3. 4. (i)	If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c = 0$, $a, b, c \in \mathbb{R}$ have a common root then find $a: b: c$. If a, b, c are the sides of a triangle, show that $\frac{1}{2} < \frac{ab+bc+ca}{a^2+b^2+c^2} < 1$. Use strong principle of mathematical induction to show that, $(3 + \sqrt{7})^n + (3 - \sqrt{7})^n$ is an even integer for all $n \in \mathbb{N}$. Show that the product of all values $(1 + \sqrt{3}i)^{\frac{3}{4}}$ is 8. Group – B [Algebra – units 3 & 4] <u>Answer any ONE question:</u> Determine the conditions for which the following system of equations has (a) only one solution; (b) no solution; (c) infinitely many solutions. x + y + z = 1 x + 2y - z = b $5x + 7y + az = b^2$ State Cayley – Hamilton theorem.	3+2 05 1

END OF QUESTIONS FOR MATHEMATICS HONOURS

HGE – T – 01 Answer any TWO questions:

- 1.
- A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by, $f(x) = \begin{cases} x, & x < 1\\ 2-x, & 1 \le x \le 2\\ x^2 3x + 2, & x > 2 \end{cases}$

Show that f'(x) does not exist at 1 and 2.

- **2.** If $u = \tan^{-1}\left\{\frac{x^3 + y^3}{x y}\right\}$, then show that, $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u$.
- **3.** Find the radius of curvature of $y = xe^{-x}$ at its maximum point.

END OF QUESTIONS FOR HONOURS GENERAL