UG/1st Sem/STAT-H-/GE-T-1/20

141/Stat.

U.G. 1st Semester Examination - 2020 STATISTICS

[HONOURS]

Generic Elective Course (GE)
Course Code: STAT-H-/GE-T-1
(Statistical Method)

Full Marks : 50 (40+10) Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meaning.

- 1. Answer any **five** questions: $2 \times 5 = 10$
 - a) What are grouped and ungrouped frequency distributions?
 - b) What are the characteristics of ratio scale?
 - c) Define Geometric mean and Harmonic mean.
 - d) Why are variance and standard deviation the most popular measures of variability?
 - e) Describe the limitations of diagrammatic representation.
 - f) What must be the values of the fourth moment about the mean in order that the

[Turn over]

- distribution be leptokurtic, mesokurtic, and platykurtic?
- g) What is the difference between correlation analysis and regression analysis?
- h) How can you measure association between two categorical variables?
- 2. Answer any **two** questions:

 $5 \times 2 = 10$

- a) Write a short note on frequency distribution.
- b) Compare mean, median and mode as measures of central tendency of a distribution.
- c) What is Sheppard's correction? What will be the corrections for the first four moments?
- d) Write down Yule's Coefficient of Association and discuss its Range. State its limitations.
- 3. Answer any **two** questions: $10 \times 2 = 20$
 - a) Write a note on the use of graphical method in Statistics. Indicate briefly the merits of various kinds of diagrams for the presentation of statistical data.
 - b) In a frequency table, the upper boundary of each class interval has a constant ratio to the lower boundary. Show that the geometric mean G may be expressed by the formula:

$$\log G = x_0 + \frac{c}{N} \sum_{i} f_i (i - 1)$$

where x_0 is the logarithm of the mid-value of the first interval and c is the logarithm of the ratio between upper and lower boundaries.

- c) Find the mean deviation from the mean and standard deviation of arithmetical progression a, a+d, a+2d, ..., a+2nd and verify that the latter is greater than the former.
- d) What is rank correlation? If d_i be the difference in the ranks of the ith individual in two different characteristics, show that the maximum value of $\sum_{i=1}^{n} d_i^2$ is $\frac{1}{3} (n^3 n)$. Hence or otherwise, show that rank correlation coefficient lies between -1 and +1.

[Internal Assessment : 10]
