U.G. 6th Semester Examination - 2021

CHEMISTRY [HONOURS]

Course Code: CHEM-H-CC-T-14

Full Marks : 40 Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer all the questions.

1. Answer any **five** from the following questions:

 $2 \times 5 = 10$

- a) State with mechanism, how can you convert furan into 4-oxopentanoic acid (MeCOCH,CH,COOH).
- b) When treated with permanganate,
 l-nitronaphthalene retains nitrogen but
 α-naphthylamine loses nitrogen. Explain.
- c) Properly designate the following pericyclic processes:

i)
$$\triangle$$
 \triangle \triangle \triangle [Turn over]

- d) Draw energy profile for conformational inversion of cyclohexane through the least energetic pathway.
- e) The following equilibrium favours left hand side for X = Cl and right hand side for $X = NMe_3^+$ Explain.

$$\underset{X}{\overset{\circ}{\sim}}$$
 $\underset{X}{\overset{\circ}{\sim}}$

- f) (IR, 2S)-1,2-Dimethylcyclohexane exists as an inseparable dl-pair at room temperature. Explain.
- g) During peptide bond formation activation of COOH through conversion into COCI is not recommended when the -NH₂ group of amino acid is protected in the form of benzyl urethane. Why?
- h) How can you separate the components of a mixture of alanine, aspartic acid and lysine? Isoelectric points of alanine, aspartic acid and lysine are 6.1, 3.0 and 9.5 respectively.

2. Answer any **two** questions from the following:

 $5 \times 2 = 10$

- a) i) How can you minimize the formation of undesired spirocyclic product in the Bogert Cook synthesis of Phenanthrene?
 - ii) Count the number of destabilizing interactions present in all the conformers of *Cis*-1,3-dimethyl cyclohexane. Comment on the chirality of these conformers.
- b) i) Acetyl nitrate and nitronium fluoroborate nitrate furan *via* different mechanistic pathway but nitration of pyrrole with these two reagents takes place through the same mechanistic pathway. Offer an explanation.
 - ii) Tollen's oxidation of D-fructose yields a mixture of D-gluconic acid and D-mannonic acid. Explain with a suitable mechanism.
- c) i) State with mechanism, what happens when L-alanine is heated with acetic anhydride in presence of pyridine. Comment on the configuration of the product.
 - ii) How can you synthesize the following compounds as directed?

$$2+\frac{1}{2}(1+1\frac{1}{2})$$

- d) i) Briefly explain the factors responsible for the stabilisation of a DNA duplex.
 - ii) For *trans*-2-chlorocyclohexanol, both the axial and the equatorial isomers are almost equally populated. Explain. 3+2
- 3. Answer any **two** from the following questions:

$$10 \times 2 = 20$$

a) i) How can you accomplish the following transformations?

781/Chem. (3) [*Turn over*]

781/Chem.

(4)

- ii) Periodic acid oxidation of *cis*-isomer of 1,2-cyclohexanediol occurs 22 times faster than that of the *trans* isomer. Explain.
- iii) Rationalise the fate of the following reaction in terms of FMO theory:

$$(2\frac{1}{2}+1+2\frac{1}{2})+2+2$$

b) i) Predict the products in the following reactions and suggest plausible mechanism in each case. Also indicate the major product wherever necessary.

$$\begin{array}{ccc}
 & Me \\
 & Me \\
 & Me
\end{array}$$

$$\begin{array}{ccc}
 & HCHO/Me_2NH \\
 & AcOH
\end{array}$$

$$Me_3C$$
 Me_3C
 N
 Me_2
 Me_3C
 N
 Me_2

ii) How can you synthesize ala-phe-gly using Merrifield protocol?

- iii) For D-glucose the percentage of α anomer in aqueous solution is 36 whereas for D-mannose the percentage of β anomer in aqueous solution is 36. Offer an explanation. $(2\frac{1}{2}+2\frac{1}{2})+3+2$
- c) i) State with mechanism, how can you synthesize the following compound:

$$Me$$
 Me

- ii) Phenanthrene reacts with diazomethane but anthracene does not. Explain.
- iii) For 4-*tert*-butyl cyclohexyl bromide the *cis* isomer reacts about 60 times faster than the *trans* isomer with PhSNa in aqueous EtOH. Explain with mechanism.
- iv) Compare the rates of acid hydrolysis of adenosine and Guanosine with reason.

$$3+2+(2\frac{1}{2}+2\frac{1}{2})$$

d) i) Comment on the stereochemical aspects of the following reaction:

781/Chem. (5) [*Turn over*]

781/Chem.

(6)

ii) How can you convert indole into the following compound?

iii) One of the diastereomers of the following compound loses COOH when treated with a base but the other does not. Why?

iv) How can you convert D-glucose into the following sugar?

v) G-C base pairing is stronger than A-T base pairing. Why? 2×5
