754/Math. UG/6th Sem./MATH-G-DSE-T-02(A)&(B)/21

U.G. 6th Semester Examination - 2021

MATHEMATICS

[PROGRAMME]

Discipline Specific Elective (DSE)

Course Code: MATH-G-DSE-T-02(A)&(B)

Full Marks : 60 Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks. Symbols and Notations have their usual meanings.

Answer all the questions from selected Option.

OPTION-A

MATH-G-DSE-T-02A

(Linear Programming)

1. Answer any **ten** questions :

 $2 \times 10 = 20$

- a) Solve Max $Z = 5x_1 3x_2$ subject to $3x_1 + 5x_2 \le 15$, $x_1, x_2 \ge 0$
- b) What is extreme point?
- c) Show that $X = \{x : |x| < k, k > 0\}$ is a convex set.
- d) What basic feasible solution of an LPP?
- e) When an LPP has alternative solutions?
- f) What is artificial variables?

- g) When Big M method is used to solve an LPP.
- h) Convert the LPP

Max
$$Z = CX, X \ge 0$$

subject to $AX \le b$ into its dual form.

i) Find initial basic feasible solution by North-West corner method.

	D_1	_	D_3	D_4	
O_1	19	20	50 40	10	7
O_2	70	30	40	60	9
O_2 O_3	40	8	70	20	18
	5	8	7	14	

- j) Where a transportation problem is said to be unbalanced?
- k) Write down mathematical form of assignment problem.
- 1) What is saddle point of a game?
- m) State fundamental theorem of game theory.
- n) Find the value of the game with pay off matrix.

5	1
3	4

o) Find the minimum number of non-basic cells in an m×n transportation problem.

2. Answer any **four** questions:

$$5 \times 4 = 20$$

a) Solve the following LPP by graphical method

Minimize
$$Z = 20x_1 + 10x_2$$

subject to $x_1 + 2x_2 \le 40$
 $3x_1 + x_2 \ge 30$
 $4x_1 + 3x_2 \ge 60$
 $x_1, x_2 \ge 0$

b) Solve the following LPP by simplex method. Max $Z = 3x_1 + 2x_2$

subject to
$$2x_1 + x_2 \le 40$$

 $x_1 + x_2 \le 24$
 $2x_1 + 3x_2 \le 60$
 $x_1, x_2 \ge 0$

- c) Prove that the dual of the dual is the primal.
- d) Solve the following transportation problem:

	D_1	D_2	D_3	D_4	D_5	\mathbf{a}_{i}
O_1	3	4	6	8	8	20
O_2	2	10	0	5	8	30
O_3	7	11	20	40	3	15
O_4	1	0	6 0 20 9	14	16	13
b_i	40	6	8	18	6	

e) Find the optimum assignment to find the maximum profit for the assignment problem with the profit matrix.

	I	II	III	IV
A	7	5	4	3
A B C	8	2	6	4
C	5	3	2	1
D	5	4	1	8

f) Solve graphically gmae whose pay-off matrix is

3. Answer any **two** questions:

i)

a)

 $10 \times 2 = 20$

Maximize $Z = x_1 + 5x_2$

Solve the LPP

subject to
$$3x_1 + 4x_2 \le 6$$

 $x_1 + 3x_2 \ge 3$
 $x_1, x_2 \ge 0$

ii) Prove that a hyper plane is a convex set.

b) i) Find the dual of the following LPP.

Maximize
$$Z = 6x_1 + 4x_2 + 6x_3 + x_4$$

subject to
$$4x_1+4x_2+4x_3+8x_4=21$$

 $3x_1+17x_2+80x_3+2x_4 \le 48$

 $x_1, x_2 \ge 0$, x_3, x_4 are unrestricted in sign.

- ii) Prove that the transportation problem always has a feasible solution.
- c) i) Solve the game by simplex method.

ii) Find the values of a so that the game with the following pay off matrix is strictly determinable

OPTION-B

MATH-G-DSE-T-02B

(Numerical Methods)

1. Answer any **ten** questions :

- $2 \times 10 = 20$
- a) Find the relative and percentage errors in an approximate representation of $\pi = 3.14159$ by $\frac{22}{7}$.
- b) Prove that $(1 + \Delta)(1 \nabla) = 1$, where Δ and ∇ are forward and backward difference operators respectively.
- c) Evaluate $\Delta^3[(1-x)(1-2x)(1-3x)]$, the interval of differencing being 1.
- d) If $f(x) = e^{ax+b}$, prove that f(0), $\Delta f(0)$ and $\Delta^2 f(0)$ are in G.P.
- e) Find a function whose first forward difference is e^x .
- f) Write the Lagrange's interpolating polynomial for the three points (x_0, y_0) , (x_1, y_1) and (x_2, y_2) .
- g) Find f(0.2) from the following table:

X	0	0.5	1
f(x)	3.25	4.17	5.03

- h) Derive $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$ for determining the the square root of a > 0, using Newton-Raphson method.
- i) Using Newton-Raphson method obtain the root of $x^3 5x + 1 = 0$ correct upto two decimal places (Take the initial approximation as $x_0 = 0$).
- j) Give the graphical interpretation of the method of false position.
- k) For the equation $x^3 + x^2 1 = 0$, construct a fixed point iteration form x = g(x) so that the method converges in the interval [0, 1].
- 1) A particle is moving along a straight line. The displacement x at time t is given as follows:

t	0	1	2	3
X	5	8	12	17

Find the velocity of the particle at t = 3.

- m) Show that the iteration scheme $x_{n+1} = \frac{\sin x_n}{x_n}$ converges for all $x_n \ge 2$.
- n) f(x) is given by:

X	0	0.5	1
f(x)	1	0.8	0.5

Using Trapezoidal rule find the value of $\int_0^1 f(x) dx$.

- o) Using Euler's method, find y(0.05), where $\frac{dy}{dx} = 1 + y^2$, y(0) = 0 and h = 0.05.
- 2. Answer any **four** questions:

 $5 \times 4 = 20$

a) Use Lagrange's interpolation to find f(3) from the following table :

X	0	1	2	4	5	6
f(x)	1	14	15	5	6	19

b) Use Newton's forward interpolation formula to establish the formula

$$\left(\frac{d^2y}{dx^2}\right)_{x_0} = \frac{1}{h^2} \left[\Delta^2 y_0 - \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_0 - \frac{5}{6} \Delta^5 y_0 + \frac{137}{180} \Delta^6 y_0 + \cdots \right]$$

c) Apply Gauss-Seidel iteration method to solve the system of equations:

$$20x + y - 2z = 17$$

 $3x + 20y - z = -18$
 $2x - 3y + 20z = 25$

Perform two iterations with zero vector as an initial approximation.

d) Use the power method to find the largest eigenvalue in magnitude and the corresponding eigenvector of the matrix

$$A = \left(\begin{array}{ccc} 25 & 1 & 2\\ 1 & 3 & 0\\ 2 & 0 & -4 \end{array}\right)$$

Take the initial approximate eigenvector $v_0 = (1, 1, 1)^T$ and perform 3 iterations.

- e) The initial value problem $\frac{dy}{dt} = t^2 + y$, y(1) = 2 is given. Find y(1.4) for h = 0.1 and h = 0.2 using Euler's method.
- f) Find the inverse of the matrix

$$A = \left(\begin{array}{ccc} 3 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 2 \end{array}\right)$$

using LU decomposition method and taking $u_{11} = u_{22} = u_{33} = 1$.

3. Answer any **two** questions:

 $10 \times 2 = 20$

a) i) Define k^{th} order difference of a function f(x). Prove that for equally spaced interpolating points $x_i = x_0 + ih$ (h > 0 and i = 1, 2, ..., n),

$$\Delta^k f(x) = \Sigma_{i=0}^k (-1)^i \begin{pmatrix} k \\ i \end{pmatrix} f[x + (k-i)h].$$

ii) Find an interpolating polynomial that fits the data:

x	0	1	2	4	5	6
f(x)	1	14	15	5	6	19

Hence interpolate at x=3.

b) i) Find f'(5) from the following table:

X	0	2	3	4	7	9
f(x)	4	26	58	112	466	922

- Explain Bisection method to solve ane quation of the form f(x)=0. Why bisection method is not applied to evaluate a double root of an equation.
- c) i) Establish Trapezoidal rule by using Newton's forward interpolation formula. Hence, derive the composite form of Trapezoidal rule.
 - ii) Evaluate $\int_0^{\frac{\pi}{2}} \sqrt{1 0.162 \sin^2 x} \ dx$ by Simpson's 1/3 rd rule taking 10 intervals.
- d) i) Use Euler's modified method to find the value of f(0.1), where y(x) is given by $\frac{dy}{dx} = y \frac{2x}{y}$, y(0) = 1.
 - ii) Using the fourth order Runge-Kutta method, find the approximate value of y(0.4) for the initial value problem $\frac{dy}{dx} = x^2 + xy 2$, y(0) = 0, with step size h = 0.2
