550/Phs.

UG/4th Sem./PHY-H-CC-T-10/21

U.G. 4th Semester Examination - 2021

PHYSICS

[HONOURS]

Course Code: PHY-H-CC-T-10

Full Marks: 20 Time: 1 Hour

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP-A

- 1. Answer any **five** questions: $1 \times 5 = 5$
 - a) Write down Barkhausen's criterion for selfsustained oscillations.
 - b) Explain how barrier potential is set up in a pn junction diode.
 - c) Define CMRR for an OPAMP.
 - d) Define peak inverse voltage for a diode.
 - e) What do you understand by an ideal diode? Draw its VI characteristics.
 - f) Explain the term thermal runway regarding BJT.
 - g) Draw the circuit diagram of a class-B Push-Pull amplifier using transistor.
 - h) Draw a circuit diagram of an emitter follower.

GROUP-B

2. Answer any **one** question:

 $5 \times 1 = 5$

- Define bandwidth of an amplifier. If f_1 and f_h are the lower and upper half power frequencies of one amplifying stage find the corresponding values for N stages. 2+3
- b) Draw self bias circuit for BJT. Explain how the bias curve is used to find the Q-point of the circuit.
- c) Discuss the two-port representation of a transistor and hence define the h-parameters.

1 + 4

GROUP-C

3. Answer any **one** question:

 $10 \times 1 = 10$

a) Write down the properties of an ideal OP-AMP. What do you mean by virtual ground? Design a circuit using one or more OPAMP whose output is given by $v_0 = (2v_1 + 16v_2)$ where v_1 and v_2 are two inputs. Draw a simple circuit diagram of an integrator using OPAMP.

2+2+4+2

- b) Define loop gain for a feedback circuit.

 Describe Hartley oscillator with a circuit diagram. Hence find the expression for the frequency of oscillation.

 2+3+5
- c) What do you mean by A/D conversion? Draw circuit diagram of a D/A converter using R-2R ladder and find out the expression of output.

2+3+5
