Kandi Raj College – Department of Mathematics – Internal Examination – 4th Semester – Honours course Full marks [Mathematics Honours] : CC-T-08 = 10 ; CC-T-09 = 10 ; CC-T-10 = 10 ; SEC = 05

	Use Separate Answer-scripts for Different Papers	
	CC - T - 08	10
	Answer any TWO (2) questions:	2×5
1.	Prove that, if a function $f:[a,b] \to \mathbb{R}$ be integrable on $[a,b]$, then f^2 is also	5
	integrable on [a, b].	
2.	Define uniform convergence of a sequence of functions $\{f_n\}$ on an interval I .	5
	Examine the uniform convergence of the sequence of functions $\{f_n\}$ on $[0, 1]$;	
	where for each $n \in \mathbb{N}$, $f_n(x) = \frac{x}{1+nx^2}$, $x \in [0, 1]$	
i.(i)	Find the radius of convergence of the power series	2
	$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n+1} (x+1)^n.$	
(ii)	Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series with radius of convergence R(>0) and $f(x)$ be the	3

sum of the series on (-R, R). Then prove that $f^k(0) = k! a_k$ (k = 0, 1, 2, ...).

CC - T - 09	10
Answer any TWO (2) questions:	2×5

- 1. Find the shortest distance from the point (0, b) on the Y-axis to the parabola $x^2 4y = 0$. Use Lagrange's method.
- 2. Change the order of integration to evaluate

$$\int_{-\infty}^{a} \left\{ \int_{\frac{x^2}{2}}^{2a-x} xy \, dy \right\} dx$$

10 2 × 5

3. Verify Stokes theorem for the function $\vec{F} = x^2\vec{\imath} - xy\vec{\jmath}$ integrated round the square in the plane z = 0 and bounded by the lines x = 0, y = 0, x = a, y = a.

CC – T – 10 Answer any TWO (2) questions:

1. Let $M_2(\mathbb{Z}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z} \}$. Then $M_2(\mathbb{Z})$ forms a ring with respect to matrix addition "+" and matrix multiplication "×".

Let $S = \{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} : a, b \in \mathbb{Z} \}$. Show that S is a subring of $M_2(\mathbb{Z})$ but not an ideal of $M_2(\mathbb{Z})$.

- 2. Let $C = \mathbb{R} \times \mathbb{R} = \{(a, b): a, b \in \mathbb{R}\}$. Then show that $\langle C, +, \cdot \rangle$ is a field where "+" and " \cdot " are defined by (a, b) + (c, d) = (a + c, b + d) and $(a, b) \cdot (c, d) = (ac bd, bc + ad)$
- 3. Prove that an ideal *M* in a ring of integers $\langle \mathbb{Z}, +, \cdot \rangle$ is maximal if and only if $M = p\mathbb{Z}$, where *p* is prime.

	SEC - T - 2A	05
	Answer any ONE (1) question:	1×5
1.(i)	Does there exist a graph with 6 edges and degree sequence $(1,1,2,4,5,5)$?	2
(ii)	Define a simple graph.	[1+2]
	Examine if a simple graph with degree sequence (2,2,4,5,5) exists.	
2.	Let G be a connected graph of order $n \ge 3$ and size m. Then show that G is	[3+2]
	Hamiltonian if $m \ge \frac{1}{2}(n-1)(n-2) + 2$.	
	Is the converse true? Give an example to illustrate.	

For Mathematics Honours students the question ENDS

Students other than Mathematics Honours: Go to Next Page

Kandi Raj College – Department of Mathematics – Internal Examination – 4th Semester – Honours course Full marks [Honours students of other subjects] : GE = 10

	GE – T – 04 [For students other than Mathematics Honours]	10
	Answer all the questions	
1.	Solve $(x^3 + 3y^2x)dx + (y^3 + 3x^2y)dy = 0.$	2
2.	Find the complete primitive of the differential equation	2
	$y = px + f(p)$ where $p = \frac{dy}{dx}$.	
3.	Solve the differential equation $\frac{d^3y}{dx^3} - 2\frac{d^2y}{dx^2} - \frac{dy}{dx} + 2y = 0.$	2
4.	Solve the differential equation $x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = \log x$.	2
5.	Give one example of each of the following exclusive types of 1 st order partial	2
	differential equation in two independent variables:	
	(i) Linear	
	(ii) Semilinear	
	(iii) Quasilinear	
	(iv) Nonlinear.	

For Other Honours students the question ENDS