Kandi Raj College – Department of Mathematics – Internal Examination – 4th Semester – Programme course

Full marks: G-CC-T-04 = 10	
For students opting for Mathematics as SEC: G-SEC-T-2A = 05	

	$\mathbf{G}\mathbf{-C}\mathbf{C}-\mathbf{T}\mathbf{-04}$	10
	Answer any TWO (2) questions:	2×5
1.	Show that the necessary and sufficient condition that a non-empty subset <i>H</i> of a finite group $(G,*)$ to be a subgroup of <i>G</i> is that $a \in H, b \in H \Rightarrow a * b \in H$. Give a suitable example to show that this does not hold for an infinite group.	3 + 2
2.	Use Lagrange's theorem to prove the following: (a) The order of every element of a finite group must divide the order of the group. (b) For any element <i>a</i> of a finite group G , $a^{O(G)} = e$, where <i>e</i> is the identity.	3+2
3.	Let $M_2(\mathbb{C}) = \left\{ \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} : a, b \in \mathbb{C}, \overline{a}, \overline{b} \text{ are conjugate of } a, b \text{ respectively} \right\}$ Show that $\langle M_2(\mathbb{C}), +, \cdot \rangle$ forms a ring with respect to matrix addition " + " and matrix multiplication " \cdot ". Is it a ring with unity? Is it a commutative ring?	3+1+1

End of Question for G-CC - T - 04

The question below is **Only for students opting for Mathematics as SEC**

Use separate answer-script to answer and submit separately

	G-SEC – T – 2A Answer any ONE (1) question:	05 1 × 5
1.	State and prove <i>Handshaking lemma</i> . Use it to show that there does not exist a graph with degree-sequence (1, 2, 3, 4, 5).	1+2+2
2.	Define a complete graph K_n . Show that every complete graph K_n must have exactly $\frac{1}{2}n(n-1)$ edges. Use it to show that the size of K_n is a multiple of n , if n is odd.	1+2+2

End of Question for G-SEC - T - 2A