2021

Molecular Biology & Biotechnology [HONOURS]

Paper: II

Full Marks: 75

Time: 4 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Write the answers to questions of each Unit in separate books.

Answer all the questions.

UNIT-I

(Cell Biology)

(Marks : 50)

- 1. Answer any **two** of the following: $1 \times 2=2$
 - a) What do you mean by light harvesting complex?
 - b) State the basic difference in the action of cohesin and condensin.
 - c) What are the role of Kinetochore?
 - d) What is Q bonding?
 - e) What is chromocentre?

[Turn over]

2. Answer any **five** questions:

- $2 \times 5 = 10$
- a) What is APC and how does it regulate anaphase?
- b) What are apoptosome and what are caspases?
- c) What are the functions of PEP carboxylase?
- d) What are the main enzymes found in the stroma of C_3 plants?
- e) Differentiate apoplast and symplast theory.
- f) What is C value and why paradox is associated with it?
- g) What are TOM and TIM complexes?
- 3. Answer any **three** questions: $6 \times 3 = 18$
 - a) What are the basic differences between C_3 and C_4 plants? What are kleptoplastids?

4+2

- b) What are the physiological role of hemidesmosome? Z_{0-1} is a common protein. State its functions. What do you mean by focal contact? 3+2+1
- c) How does condensin carry out compaction of chromosome? How does phragmoplast take part in cell plate formation in plants?

4+2

d) What is Calvin cycle? How is ATP synthesized in the light phase of photosynthesis? 3+3

74(Sc) [2]

- 4. Answer any **two** questions: $10 \times 2 = 20$
 - a) What is spectrin? What is the effect of colchicine in microtubule assembly? What is tan factor? In brief state the role of intermediate filaments in cell division.

2+3+2+3

b) Describe β -oxidation of unsaturated fatty acids. Write a note on biomedical importance of β -oxidation. What is ketogenesis?

6+2+2

c) Describe the molecular events during cell cycle progression from G to M phase.

10

UNIT-II

(Biophysics and Instrumentation)

(Marks : 25)

- 5. Answer any **eight** of the following: $1 \times 8 = 8$
 - a) Write the principle of functioning of a 'Gas Ionization Counter' for detection of radioactivity.
 - b) Why there is a deviation from Beer-Lambert's law at higher concentration of Analyte?
 - c) Describe the law of Radioactive Decay.

- d) State some properties of Alpha rays.
- e) What is a state function?
- f) State the basic difference between 'RPM' and 'RCF'.
- g) What is an Isotone?
- h) Explain the thermodynamics of ATP hydrolysis.
- i) State the differences between 'Phagocytosis' and 'Pinocytosis'.
- j) Explain the phenomenon of Osmosis.
- 6. Answer any **six** of the following: $2 \times 6 = 12$
 - which kind of Electromagnetic Radiation is used in ESR-Spectroscopy? Does the type of radiation used have any effect on the applications of ESR-Spectroscopy in analysis of biological samples?
 - b) What is the fundamental difference in the principle of working of 'Flame Photometry' and 'Atomic Absorption Spectroscopy'? 2
 - c) Explain the second law of thermodynamics, with an example.
 - d) What is 'Chemical Shift'? How does 'Shielding' and 'Deshielding' effect, affect 'Chemical Shift' in NMR-Spectroscopy?

[4]

1 + 1

e) Explain 'Bragg's law' for X-ray diffraction.

2

- f) Explain the differences between an 'Enthalpy driven process' and an 'Entropy driven process'.
- g) Describe the functioning of a 'Liquid Scintillation Counter' used for detection of radioactivity.
- h) How 'Mass Spectrometry' can be used in sequencing of proteins?
- 7. Answer any **one** of the following: $5 \times 1=5$
 - a) What is 'London dispersion force'? State 'Pauli's exclusion principle'. Explain the difference between 'Nuclear Spin' and 'Electron Spin'. In order to prepare a protein sample for denaturing (SDS) PAGE, SDS (detergent), β-Mercaptoethanol (reducing agent) and heat is used. Which kinds of chemical bonds are disrupted by the above chemicals and heat in the protein sample?

1+2+2

b) What is the significance of 'Clathrin Coated Vesicles'? How 'Specific Cargo' in the vesicle is selected for transport? What is the role of 'SNARE Proteins' in vesicle targeting?

1+2+2

c) State Fick's law of Diffusion. How 'Dynamic Light Scattering' (DLS) can be used to determine the hydrodynamic radius of a molecule? Based on the principle of the technique, explain why 'Gel-Filtration' chromatography is also called 'Size Exclusion' chromatography. 1+2+2
