654/Phs.

UG/5th Sem/PHY-H-CC-T-11/20

U.G. 5th Semester Examination - 2020 PHYSICS

[HONOURS]

Course Code: PHY-H-CC-T-11 (Quantum Mechanics & Applications)

Full Marks : 40 Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

- 1. Answer any **five** questions:
 - a) Show that The group velocity of the wave packet is equal to the classical velocity of the particle.
 - b) What is operator in quantum mechanics? Explain why 'log', or 'sin' is not a quantum mechanical operator.
 - c) Define orthogonal and orthonormal state using Dirac bra-ket notation.
 - d) Show that if ψ be an eigen function of the operator A with eigen value λ , then it is also eigenfunction of e^A with eigenvalue e^{λ} .

- e) Using Heisenberg uncertainty relation show that electron cannot exist in the nucleus.
- f) What is the physical interpretation of a wave function? Write its orthogonal and normalized conditions.
- g) Check whether the operator $\hat{O} = -i\hbar \frac{d}{dx}$ is linear or not.
- h) Find out the wave function of a free particle in Cartesian coordinate.
- 2. Answer any **two** questions: $5 \times 2 = 10$
 - a) i) The time independent wave function of a particle of mass m moving in a potential $V(x) = \alpha^2 x^2$ is

$$\psi(x) = \exp\left(-\sqrt{\frac{m\alpha^2}{2h^2}x^2}\right)$$

 α being a constant. Find the energy of the system.

- ii) Give a physical example of particle in a box. 1+4
- b) i) Write down the ground state wave function of a harmonic oscillator.

 $2 \times 5 = 10$

ii) Interpret probability current densities of Wave Function in three dimensions.

1 + 4

- c) i) Derive Time dependent Schrodinger equation for matter waves.
 - ii) Write down the expression of angular momentum operator in spherical polar coordinate. 3+2
- d) i) What is the momentum representation of the position operator \hat{x} ?
 - ii) Show that this representation satisfies the position-momentum commutation relation.
 - 1ii) Write down the radial wave function of the 1st and excited state of Hydrogen atom and plot the function. 1+2+2
- 3. Answer any **two** questions: $10 \times 2 = 20$
 - a) i) Consider a particle whose normalized wave function is

$$\psi(x) = 2\alpha \sqrt{\alpha} x e^{-\alpha x} \quad x > 0$$
$$= 0 \quad x < 0.$$

[Turn over]

Calculate $\langle x \rangle$ and $\langle x^2 \rangle$.

ii) The mathematical representation of a spherical wave travelling outwards from a point is given by

$$\psi(r) = \frac{A}{r}e^{ikr}$$

where A is a constant and k is the wave vector. Evaluate its probability current density.

- value of V(x) for every normalizable solution to the time -independent Schrodinger equation. 4+4+2
- b) i) Derive The Schrodinger Equation for the Harmonic Oscillator.
 - ii) Using the uncertainty principles between x and p derive the zero-point energy: $E_0 = \frac{1}{2} h\omega \text{ for a harmonic oscillator with}$

natural frequency ω .

- iii) What is the difference between Zeeman effect and Stark effect? 4+4+2
- c) i) What is space quantization? Explain with a suitable diagram. Discuss briefly spin angular momentum. What is the importance of Stern-Gerlach experiment?

(4)

Discuss normal Zeeman effect with energy level diagram. (2+2+1)+5

- d) i) Show that there is no splitting in the energy level of S orbital of Sodium.
 - ii) You have a system of two electrons whose orbital quantum numbers are $I_1 = 2$ and $I_2 = 4$ respectively.
 - A) Find the possible values of l (total orbital angular momentum quantum number) for the system.
 - B) Find the possible values of s (total spin angular momentum quantum number) for the system.
 - C) Find the possible values of j (total angular momentum quantum number) for the system.
 - iii) Define symmetric and antisymmetric wave function. Determine whether the following function is symmetric or antisymmetric.

$$\phi(x_1, x_2) = \frac{3(x_1 - x_2)}{2(x_1 - x_2)^2 + 7}$$

iv) Consider a system of N identical particles. What would happen to the probability density if the particles interchange their position? 2+3+(1+1)+3
