U.G. 5th Semester Examination - 2020

MATHEMATICS

[PROGRAMME]

Discipline Specific Elective (DSE)

Course Code: MATH-G-DSE-T-1B

(Complex Analysis)

Full Marks : 60 Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Unless otherwise stated notations carry their usual meanings.

1. Answer any **ten** questions from the following:

$$2 \times 10 = 20$$

- a) Find $\lim_{z \to -3 + i\sqrt{2}} \frac{z + 3 i\sqrt{2}}{z^2 + 6z + 11}$.
- b) Examine the continuity of the function f defined by $f(z)=\frac{Re(z)}{z+iz}-2z^2$ at $z_0=e^{i\pi/4}$.
- c) Give an example to show that the continuous function may not be uniformly continuous.
- d) Show that the function $f(z) = x^2 + y^2$ is not analytic at any point.

- e) If f(z) and $\overline{f(z)}$ are both analytic in a domain D then prove that f(z) is constant in D.
- f) Find the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n z^n$, where

$$a_n = i2^n$$
 for even n
= -3^n for odd n :

- g) Prove that $|\int_C \frac{dz}{z^2+10}| \le \frac{2\pi}{3}$, where C is the circle $C: z(t) = 2e^{it}, (-\pi \le t \le \pi)$.
- h) Does there exist a function f(z) analytic in |z| < 1 and satisfying $f(\frac{1}{2n}) = f(\frac{1}{2n+1}) = \frac{1}{2n}(n = 1, 2, ...)?$
- i) Evaluate $\int_C (3z^2 2z)dz$, where C is the contour defined by $z(t) = t + it^2, t \in [0, 1]$.
- j) Suppose f is analytic for $|z| \le 1$, f(0) = 0 and $f(z) \le 5$ for all |z| = 1. Can |f'(0)| > 5?
- k) If P(z) is a polynomial of degree n, prove that $\int_{|z|=2} \frac{P(z)}{(z-1)^{n+2}} dz = 0.$
- 1) Suppose f(z) and g(z) are entire functions, g(z) is never zero and $|f(z)| \le |g(z)|$ for all z. Show that there exist a constant c such that f(z) = cg(z).
- m) Show that the range of a non-constant entire function is dense in \mathbb{C} .

- n) At which points is the function f(z) = zRe(z) differentiable?
- o) Let f be analytic in a domain D, then all the derivatives of f exist and are analytic in D. Justify the statement.
- 2. Answer **four** questions from the following: $5\times4=20$
 - a) Let f = u + iv be differentiable in an open connected set D and assume that the real and imaginary part of f are related by au + bv + c = 0, where the numbers a, b, c are real, a and b not being simultaneously zero. Find f.
 - b) State and prove Liouville's theorem.
 - c) Prove that the zeros of a non-constant analytic function are isolated points.
 - d) Find the Laurent expansion of the function $\frac{e^z}{z(z^2+1)}$ in the domain 0 < |z| < 1.
 - e) Prove that the sequence $\{f_n\}$, where $f_n(z) = \frac{1}{1+nz}$ converges uniformly in the region $|z| \geq 2$ but not uniformly in the region $|z| \leq 2$.
 - f) State Cauchy's Integral formula. Use it to evaluate $\int_C \frac{z^3+3z-1}{(z-1)(z-2)} dz$, where C is the circle |z|=3.

- 3. Answer **two** questions from the following: $10 \times 2 = 20$
 - a) i) Prove that if a function f is continuous in a closed and bounded region D then f is bounded in D. Is it true if the domain is not closed?
 - ii) Discuss the continuity of the function

$$f(z) = \frac{(Re(z))^2(Im(z))}{|z|^2} \quad \text{if } z \neq 0$$

$$= \quad 0 \quad \text{if } z = 0$$
at the all points of \mathbb{C} .

b) i) Show that at z = 0 the function defined by

$$f(x+iy) = \frac{(1+i)x^3 - (1-i)y^3}{x^2 + y^2}$$
 for $x + iy \neq 0$
= 0 for $x + iy = 0$

satisfies the Cauchy-Riemann equations but it is not differentiable. 5

ii) Discuss the convergence of the series

$$\sum_{n=-\infty}^{\infty} \frac{z^{2n}}{3^{|n|}}.$$

- c) i) If f(z) be a nonzero analytic function in a simply connected domain D then prove that there exists a function g(z), analytic in D, such that $e^{g(z)} = f(z)$.
 - ii) Evaluate $\int_{|z|=3} \frac{3z^4+2z-6}{(z-2)^3} dz$.

- iii) Prove that a sequence of functions convergence uniformly on a set *E* if and only if the sequence is uniformly Cauchy in *E*.
- d) i) Let $f(z) = \frac{x^3y(y-ix)}{x^6+y^2}$, if $z \neq 0$, = 0, if z = 0.

Show that $\lim_{z\to 0} \frac{f(z)-f(0)}{z}$ exists along any fixed direction, that all these limits are equal to zero, but that f is not differentiable at the origin. Is it continuous there? 2+2+2

ii) Define analytic function at point. If f(z) is analytic in a domain D and Re(f(z)) is constant in D then prove that f(z) is constant in D.

1+3

[5]

667/ Math.