Kandi Raj College – Department of Mathematics – Internal Examination – 5th Semester – Program course

Full Marks: DSE – T – 1 = 10 and SEC – T – 3 = 05 [Only for students opting for Mathematics as SEC]

	DSE – T – 1 Answer either <mark>Group A</mark> or <mark>Group B</mark>	10
1. 2. 3.	Group – A [Matrices & Linear Algebra] Answer any TWO questions: Find the row-reduced echelon form of $A = \begin{bmatrix} 2 & -1 & 3 \\ 3 & 2 & 1 \\ 1 & -4 & 5 \end{bmatrix}$ and hence find its rank. Find a basis for \mathbb{R}^3 that contains the vectors (1,2,0) and (1,3,1). Prove that a linear transformation <i>T</i> of a vector space <i>V</i> of dimension <i>n</i> to a vector space <i>V'</i> of dimension <i>m</i> over the same field <i>F</i> is represented by an <i>m</i> × <i>n</i> matrix over <i>F</i> corresponding to the respective bases of <i>V</i> and <i>V'</i> .	10 05 05 05
1. (i) (ii) 2. 3. 4.	Group – B [Complex Analysis] Define an analytic function. Show that the function $f(z) = z ^2$, $\forall z \in \mathbb{C}$, is differentiable at (0,0) but not analytic at (0,0). Evaluate $\int_{\gamma} (e^z + z^2)/(z-1) dz$, where, $\gamma: z = 2$. Find the radius of convergence of $\sum_{n=0}^{\infty} \{3 + (-1)^n\}^n z^n$. Find the Laurent Series expansion of $f(z) = \frac{1}{z-2}$ in the region $ z < 1$.	10 1 2 3 2 2

SEC – T – 3 [ONLY FOR STUDENTS OPTING FOR MATHEMATICS AS	SEC]
Use separate answer script for SEC	

Answer either Group A or Group B

	Group – A [Integral Calculus]	05
1.	Using reduction formula $J_n = \int_0^{\pi/2} \cos^n x dx$, find $\int_0^{\pi/2} \cos^6 x dx$.	3
2.	Evaluate $\iint_R \sin(x+y) dx dy$ over $R: \{0 \le x \le \frac{\pi}{2}, 0 \le y \le \frac{\pi}{2}\}.$	2

05

	Group – B [Vector Calculus]	05
1.	Find a vector of magnitude 5 perpendicular to both the vector $2\hat{i} + \hat{j} - 3\hat{k}$ and $\hat{i} - 2\hat{j} + \hat{k}$.	2 ¹ / ₂
2.	If, $\vec{A} = 2xz^2\hat{\imath} - yz\hat{\jmath} + 3xz^3\hat{k}$, find $\vec{\nabla} \times \vec{A}$ at the point (1,1,1).	2 ¹ / ₂