439/Math

UG/3rd Sem/MATH-H-CC-T-05/20

U.G. 3rd Semester Examination - 2020

MATHEMATICS

[HONOURS]

Course Code: MATH-H-CC-T-05

(Theory of Real Functions & Introductin to Metric Spaces)

Full Marks: 60

Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Symbols and notations have their usual meanings.

1. Answer any **ten** questions:

 $2 \times 10 = 20$

- a) Let f(x+y)=f(x)f(y) for all x and y and f(5)=-2, f'(0)=3. What is the value of f'(5)?
- b) Show that $a^x > x^a$ for $x > a \ge e$.
- c) If f(x)=2[x]+1, find all the points of discontinuities of f in [0, 3].
- d) Show that $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.

e) If (X, d) be metric space and x, y, z be any three points of X, prove that

$$\left|d(x,z)-d(y,z)\right|\leq d(x,y).$$

- f) Prove that there exists $x \in \left(0, \frac{\pi}{2}\right)$ such that $x = \cos x$.
- g) Draw open ball of unit radius about (0, 0) for the metric space (\mathbb{R}^2, d) , where

$$d(z_1-z_2) = \max(|x_1-x_2|, |y_1-y_2|),$$

where $z_1 = (x_1, y_1)$ and $z_2 = (x_2, y_2)$ are any two points of \mathbb{R}^2 .

- h) "The conditions of Rolle's theorem are only sufficient but not necessary for f'(x) to vanish at some point in (a, b)'' Justify the statement with example.
- i) Give example of a function which is continuous at only one point of the domain.
- j) Let (X, d) be a given metric space and let (Y, d_Y) be a subspace of (X, d). Prove that every d_Y -closed subset of Y is d-closed if and only if Y is d-closed.

- k) Verify the Cauchy's mean value theorem for the functions x^2 and x^3 in [1, 2].
- 1) Prove that $\lim_{x \to \infty} \frac{1}{x} = 0$.
- m) A real function f is continuous [0, 2] and f(0) = f(2). Show that there exists at least a point c in [0, 1] such that f(c) = f(c+1).
- n) If f+g is differentiable at a point, then will f and g both be differentiable? Justify your answer.
- o) Is every open set in a metric space is an open ball? Justify.
- 2. Answer any **four** questions: $5 \times 4 = 20$
 - a) If $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and f(a) f(b) < 0, then prove that there exists at least one point c in [a,b] such that f(c) = 0.
 - b) Show that a subset of a metric space is open if and only if it is the union of a family of open balls.
 - c) Show that between any two roots of $e^x \cos x = 1$, there exists at least one root of $e^x \sin x 1 = 0$.

- d) If f is defined and continuous on [a, b] and is derivable on (a, b) and if f'(x) = 0 for all x in (a, b), then show that f(x) has a constant value throughout [a, b].
- Prove that $\frac{\tan x}{x} > \frac{x}{\sin x}$, whenever $0 < x < \frac{\pi}{2}$.
- f) Let $f: I \to \mathbb{R}$ be a real function. Show that f is differentiable at a point c if and only if there exists a real function $\varphi: I \to \mathbb{R}$ that is continuous at c satisfying

$$f(x)-f(c)=\varphi(x)(x-c) \ \forall x \in I \text{ and } \varphi(c)=f'(c).$$

- 3. Answer any **two** questions from (a) to (d): $10 \times 2 = 20$
 - a) i) Show that $f(x)=x^2$ is uniformly continuous on [-1, 1], but not uniforly continuous on $[0, \infty]$.
 - ii) Let (X, d) be a metric space. Show that (X, d_1) is also a metric space where $d_1(x, y) = \min\{1, d(x, y)\}.$ 5+5
 - b) i) If φ and ψ be two functions derivable in [a, b] and $\varphi(x)\psi'(x) \psi(x)\varphi'(x) > 0$ for any x in this interval, then show that

between two consecutive roots of $\phi(x)=0$ in [a, b], there lies exactly one root of $\psi(x)=0$.

ii) Prove that every subset the discrete metric space is open as well as closed.

6+4

- c) i) If $\varphi(x) = f(x) + f(1-x)$, $x \in [0, 1]$ and f''(x) < 0 for all $x \in [0, 1]$, show that φ is increasing on $\left[0, \frac{1}{2}\right]$ and decreasing on $\left[\frac{1}{2}, 1\right]$.
 - ii) Show that $1 \frac{x^2}{2} \le \cos x \le 1 \frac{x^2}{2} + \frac{x^4}{24}$, for all $x \in \mathbb{R}$. 5+5
- d) i) Expand $(1+x)^m$, when m is any real number, in powers of x.
 - ii) If f'' is continuous on some nbd of c prove that

$$\lim_{h \to 0} \frac{f(c+h) - 2f(c) + f(c-h)}{h^2} = f''(c).$$
6+4
