U.G. 3rd Semester Examination-2020 CHEMISTRY [HONOURS]

Course Code: CHEM-H-CC-T-06

Full Marks : 40 Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer any **two** questions:

 $1\times2=2$

- a) Write the resonating structures of SCN-.
- b) Write down the name and formula of principal ore of Uranium.
- c) Define Madelung constant.
- 2. Answer any **four** questions:

 $2\times4=8$

- a) Explain importance of Kapustinskii expression for determination of lattice energy.
- b) Boron (B_2) is paramagnetic while carbon (C_2) is diamagnetic. Justify the statement.
- c) Trimethylamine, $(CH_3)_3N$, is pyramidal while trisilylamin, $(H_3Si)_3N$, is planar– Explain.

- d) What do you mean by non-equivalent hybridization? Give example.
- e) Calculate formal charge in each atom of nitric acid.
- f) Calculate the void space in a body centered cubic lattice.
- 3. Answer any **two** questions: $5 \times 2 = 10$
 - i) What do you mean by μ-hydrogen bonding?
 Give an example.
 - ii) Explain the role of hydrogen bonding in biological system. 2+3=5
 - b) i) Compare calcination and roasting.
 - ii) Calculate the lattice energy of KCl[Given interionic separation 3.14Å, n=9, A=1.746, $\epsilon_0 = 8.85 \times 10^{-12} \ C^2 J^{-1} m^{-1}]. \qquad 2+3=5$
 - c) i) Find the electron affinity of iodine with the help of following data(in kcal mol⁻¹). $\Delta H_f = -68.8, \ U_{Nal} = -165.4, \ \Delta H(s) \ (Na) = 25.9, \ IE(Na) = 118.4, \ \Delta H_{diss} \left(\frac{1}{2}I_2\right) = 51.0$
 - ii) Draw the shape of PCI_3F_2 with proper explanation. 3+2=5

- 4. Answer any **two** questions: $10 \times 2 = 20$
 - a) i) Draw the molecular orbital diagram of BeH₂.
 - ii) Predict the shape of I₃-ion and XeF₆ molecule and mention the state of hybridization of central element.
 - iii) Explain the structural differences between wurtzite and zinc blend.
 - iv) Which type of crystal defect is found in FeO? 2+(2+2)+3+1=10
 - b) i) Mention the flow chart diagram for the extraction of nickel from its ore. Write down the chemical equations involved in it.
 - ii) Determine the limiting radius ratio value for coordination number 4.
 - iii) Explain conductivity of metal in terms of band theory. 4+2+4=10
 - c) i) Differentiate between Schottky and Frenkel defects.
 - ii) Conductivity of germanium increases on addition of small amount of arsenic –explain.

[Turn over]

- iii) What do you mean by δ -molecular orbitals? Define μ -bond.
- iv) Why carbon reduction is not a suitable method for extraction of Al from its ore? 3+2+(2+1)+2=10
