U.G. 1st Semester Examination - 2020

MATHEMATICS

[HONOURS]

Course Code: MATH-H-CC-T-02

Full Marks : 60 Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

The notations and symbols have their usual meanings.

- 1. Answer any **ten** questions: $2 \times 10 = 20$
 - i) Using Descartes' rule of signs, find the nature of roots of the following equation:

$$x^4 + 15x^2 + 7x - 11 = 0.$$

- ii) State the well-ordering principle. Is the set $\left\{n \in \mathbb{N} \mid n > -\sqrt{2}\right\}$ well-ordered? Justify.
- iii) Show that every odd degree polynomial has at least one real root.
- iv) Can an eigen vector be zero? Justify your answer.

- v) Let A and B be any two square matrices. Is it true that tr(AB) = tr(A).tr(B)? Justify your answer.
- vi) Use the principle of mathematical induction to prove that

$$1^2 + 3^2 + 5^2 + ... + (2n-1)^2 = \frac{4n^3 - n}{3}, \ \forall n \ge 1.$$

- vii) What is an inconsistent system of linear equations? How do they arise?
- viii) Show that corresponding to every real matrix $A_{m \times n}$ there is a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$.
- ix) Show that only subspaces of $\mathbb R$ are $\{0\}$ and $\mathbb R$.
- x) Prove or disprove: $W = \left\{ A \in M_n(\mathbb{R}) \mid tr(A) = 0 \right\} \text{ is a subspace of } M_n(\mathbb{R}).$
- xi) Is the set $\{(1,2,3), (1,0,-1), (0,2,4)\}$ linearly independent? Justify your answer.
- xii) Can a vector space have more than one basis? Justify.

- xiii) Solve the equation $x^3 3x^2 + 4 = 0$, two of its roots being equal.
- xiv) If x_1 , x_2 , x_3 are three positive numbers such that $x_1 + 2x_2 + 3x_3 = 60$, what is the smallest possible value of the sum $x_1^2 + x_2^2 + x_3^2$?
- xv) Consider the equivalence relation \sim on \mathbb{Z} given by $m \sim n$ if and only if $m^2 n^2$ is a multiple of 5. Find the corresponding partition of \mathbb{Z} .
- 2. Answer any **four** questions: $5\times4=20$
 - a) i) Let V be the space of polynomials from \mathbb{R} into \mathbb{R} which have degree less than or equal to 3. Let $D:V \to V$ be the differentiation operator. What is the matrix representation of D relative to the standard ordered basis of V.
 - ii) If we take a different basis for *V*, then how the matrix with respect to this new basis will be related to the above matrix?
 - b) Find the condition that the bi-quadratic equation $x^4 + px^3 + qx^2 + rx + s = 0$ should have its roots connected by the relation $\beta + \gamma = \alpha + \delta$.

c) Find all solutions of the following system of linear equations:

$$2x_{1} - 3x_{2} - 7x_{3} + 5x_{4} + 2x_{5} = -2$$

$$x_{1} - 2x_{2} - 4x_{3} + 3x_{4} + x_{5} = -2$$

$$2x_{1} - 4x_{3} + 2x_{4} + x_{5} = 3$$

$$x_{1} - 5x_{2} - 7x_{3} + 6x_{4} + 2x_{5} = -7$$

d) Find the eigen values and associated eigen vectors of the matrix

$$A = \begin{bmatrix} 7 & 0 & -3 \\ -9 & -2 & 3 \\ 18 & 0 & -8 \end{bmatrix}.$$

- e) Find all the equivalence relations on the set $A = \{a, b, c\}$.
- f) Let n be any integer. Show that 3 divides one of n, n+1, 2n+1.
- 3. Answer any **two** questions: $10 \times 2 = 20$
 - a) i) Find the equation whose roots are the squares of the roots of the equation

$$x^4 - x^3 + 2x^2 - x + 1 = 0.$$

Use Descartes' rule of signs to deduce

that given equation has no real roots.

5

- ii) Find out all the *n*th roots of unity and show that they all lie in a circle. 5
- b) i) Find the rank and nullity of the following matrix:

$$A = \begin{bmatrix} 1 & 0 & 1 & -1 & 6 \\ 2 & -1 & 5 & -1 & 7 \\ -1 & 1 & -4 & 1 & -3 \\ 0 & 1 & -3 & 1 & 1 \end{bmatrix}$$
 5

ii) Is the following matrix invertible?

$$A = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} \\ \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} \end{bmatrix}$$

If yes, find out the inverse. 5

c) i) Let A be any finite set and φ: A → A is injective. Show that φ is also surjective.
 Give an example to show that the this may not be true for infinite set.

3+2=5

Suppose $P(\mathbb{R})$ denotes the space of polynomials over \mathbb{R} . Let $T:P(\mathbb{R}) \to P(\mathbb{R})$ be defined as T(f(x)) = f'(x). Check whether T is linear, one-one and onto. Justify your answer.

1+2+2=5

d) i) Use the Cayley-Hamilton theorem to compute A^{-1} , where

$$A = \begin{bmatrix} 2 & 3 & 5 \\ 0 & 1 & 7 \\ 0 & 0 & 9 \end{bmatrix}.$$

Let A be a non-invertible n × n matrix.
 Explain why 0 must be an eigenvalue of A. Find the geometric multiplicity of the eigenvalue 0 in terms of rank(A).

2+2=4

iii) Let A be any matrix. Show that A and A^{-1} have same eigen vectors.
