U.G. 6th Semester Examination - 2021 STATISTICS [HONOURS]

Course Code: STAT-H-CC-T-14

(Multivariate Analysis and Nonparametric Methods)

Full Marks : 50(40+10) Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meanings.

- 1. Answer any **five** questions: $2 \times 5 = 10$
 - a) Give an example of a bivariate situation where the marginal distributions are normal but the joint distribution is not bivariate normal.
 - b) Mention any two properties of multivariate normal distribution.
 - c) Explain the use of partial and multiple correlation coefficients.
 - d) State the general expressions for the mean vector and covariance matrix under linear transformations of a random vector.
 - e) Explain the dimensionality reduction role played by Principal Components.

- f) State the postulates on the 'common factors' and the 'specific factors' in the orthogonal factor model.
- g) In what situations do we use nonparametric tests?
- h) Write a note on one-sample sign test.
- 2. Answer any **two** questions:

 $5 \times 2 = 10$

 $10 \times 2 = 20$

- a) Derive the moment generating function of a p-variate normal distribution.
- b) Explain the problem of classification into two classes.
- c) Establish the relationship of principal components to the eigenvalues and eigenvectors of the covariance matrix of the underlying random vector.
- d) Describe the median test procedure.
- 3. Answer any **two** questions:
 - a) Write down the sampling distributions of \overline{X} and S, the sample mean vector and covariance matrix, based on a sample of size n from a multivariate normal population with mean vector μ and covariance matrix $\Sigma \mu$. Show that \overline{X} is an unbiased estimator of μ but S is a biased estimator of Σ . Suggest an unbiased estimator of Σ .

- b) Find an expression for the multiple correlation coefficient between X_1 and X_2 , X_3 , ..., X_p . Prove that the conditional variance of X_1 given the rest of the variables cannot be greater than unconditional variance of X_1 .
- c) Present the 'Orthogonal Factor Model' and develop the ideas of 'Communality' and 'Specific Variance'.
- d) Describe the Kolmogorov-Smirnov one-sample and two-sample tests.

[Internal Assessment: 10]
