FULL MARKS [MATHEMATICS HONOURS]: CC – T – 03 = 10 ; CC – T – 04 = 10

FULL MARKS [HONOURS STUDENTS OF OTHER SUBJECTS]: GE – T – 02 = 10

FOR MATHEMATICS HONOURS STUDENTS ANSWER CC-T-03 & CC-T-04 IN SEPARATE ANSWER SCRIPTS

	CC - T - 03	10
	Answer any TWO (2) questions	2×5
1.(i)	Show that the sequence $\{u_n\}$ where $u_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ is divergent.	3
(ii)	Show that the sequence $\{u_n\}$ where $u_n = \frac{\sin \frac{n\pi}{2}}{n}$ is convergent and converges to 0.	2
2.	Test the series $1 + \frac{2x}{2!} + \frac{3^2x^2}{3!} + \frac{4^3x^3}{4!} + \cdots$	5
3.	State and prove the Archimedean property of real number.	5
	CC - T - 04 Answer ALL questions	10
1.	Find the exact solution of the initial value problem $\frac{dy}{dy} = y^2$, $y(0) = 1$.	3
	Starting with $y_0(x) = 1$, apply Picard's method to calculate $y_1(x), y_2(x), y_3(x)$ and compare these results with the exact solution.	
2.	Show that $f(x, y) = x^2 y $ satisfies a Lipschitz condition on the rectangle $ x \le 1$ and	3
	$ y \leq 1$, but that $\frac{\partial f}{\partial y}$ fails to exist at many points of this rectangle.	
3.	Solve the following differential equation	2
	$\frac{dx}{dx} = \frac{dy}{dz} = \frac{dz}{dz}$	
4.	z = 0 - x Determine the nature and stability properties of the critical point (0,0) of the following linear autonomous systems:	2
	$\begin{cases} \frac{dx}{dt} = 2x\\ \frac{dy}{dt} = 3y \end{cases}$	

FOR MATHEMATICS HONOURS STUDENTS, THE QUESTION ENDS HERE

FOR STUDENTS, OTHER THAN MATHEMATICS HONOURS

	GE - T - 02 Answer ALL questions	10
1.	Solve $(1 + 2) = (1 - 1)$	3
2.	Solve $(1 + y^2)dx = (\tan^{-1}y - x)dy$ $(y - nx)(n - 1) = n, \text{where, } n = \frac{dy}{dx}$	2
3.	Solve $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^x$	3
4.	Solve $\frac{dx^2}{y+z} = \frac{dy}{z+x} = \frac{dz}{x+y}$	2

FOR OTHER HONOURS STUDENTS, THE QUESTION ENDS HERE