U.G. 2nd Semester Examination - 2021

STATISTICS [HONOURS]

Course Code: STAT-H-CC-T-04

(Probability and Probability Distributions-II)

Full Marks: 25(20+5) Time: 1 Hour

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in

their own words as far as practicable.

Notations and symbols have their usual meaning.

- 1. Answer any **five** questions: $1 \times 5 = 5$
 - a) If the joint pdf of two random variables X and Y be f(x,y), write down an expression for the conditional pdf of Y|X.
 - b) Write down Chebyshev's inequality.
 - c) Write down the pdf of a logistic distribution.
 - d) If (X, Y) assumes only two pairs of values (-1,-5) and (1, 10), what is the value of ρ ?
 - e) Mention a situation where Binomial distribution is appropriate to model the data.

- f) Suppose $X \sim Bin(n, p)$, 0 . What is the pmf of <math>Y = n X?
- g) Write down the expression for the mgf of Poisson distribution with parameter λ .
- h) If (X, Y) follows bivariate normal distribution with parameters $(0, 0, 1, 1, \rho)$, what is the conditional distribution of Y given X = x?
- 2. Answer any **one** question: $5 \times 1=5$
 - a) Define p.g.f. of a discrete probability distribution. Derive the p.g.f. of a binomial distribution, Bin(n, p). Hence find the probability of the value 1.
 - b) Show that:

$$Var(Y)=Var\{E(Y \mid X)\}+E\{Var(Y \mid X)\}.$$

- 3. Answer any **one** question: $10 \times 1 = 10$
 - a) i) Verify whether the function $F(x) = 0 \text{ if } x \le 1 \qquad \text{and } 1-x \text{ if } x > 1$ represents a c.d.f. 5
 - ii) If X has the p.d.f. $f(x)=1/(2\sqrt{3})$ for $-\sqrt{3} \le x \le \sqrt{3}$; and zero elsewhere, find an upper bound to $P(|X| \ge 3/2)$.

- b) i) Write down the p.m.f. of a Hypergeometric distribution and derive its mean.
 - ii) Let X be a non-negative random variable with distribution function F. Show that

$$E(X) = \int_0^\infty \left[1 - F(x) \right] dx$$
 5

[Internal Assessment: 5]
