2021 STATISTICS

[HONOURS]

Paper : IV

Full Marks: 75

Time: 4 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer all the questions.

1. Attempt any **five** of the following questions:

 $1 \times 5 = 5$

- i) Find a relation between Δ and E.
- ii) State Markov's inequality.
- iii) What do you mean by transcendental equation? Provide an example of it.
- iv) Write down Stirling's approximation formula for n!.
- v) If $\{a_n\}$ converges to a and $\{b_n\}$ converges to b then where does $\left\{\frac{a_n}{b_n}\right\}$ converge, if $b_n \neq 0$, $b \neq 0$?

[Turn over]

- vi) Give the logic for which you can assume the dispersion matrix Σ , of a random vector \tilde{X} , to be positive semi definite.
- vii) Find $\Delta^{4}(x-3)(x+11)(x-7)$ when $\Delta x = 1$.
- 2. Attempt any six of the following questions:

 $2 \times 6 = 12$

- i) Define an improper integral. Give some examples.
- ii) Establish a relation between Δ and D.
- iii) Define radius of convergence for a real power series.
- iv) Why we generally use polynomial interpolation formula?
- v) What is the characterization of multivariate normal distribution?
- vi) Prove that a necessary and sufficient condition for the convergence of a monotonic sequence is that it is bounded.
- vii) Can a sequence converge to more than one limit?
- viii) Let (X, Y) be a bivariate random variables of continuous type. Define conditional

- distribution of Y given X=x. Hence define independence of X and Y.
- ix) Let $X = (X_1, X_2)'$ have a bivariate normal distribution with $E(X_1) = E(X_2) = 0$, $E(X_1^2) = E(X_2^2) = 1$ and $E(X_1, X_2) = 1$. Find $P[|2x_1 + 3x_2|| \le 15]$.
- 3. Attempt any **three** of the following questions:

$$6 \times 3 = 18$$

i) Given n positive numbers C_1 , C_2 , ..., C_n , find the maximum value of $\sum_{i=1}^{n} C_i x_i$; if the variables x_i 's are so restricted so that $\sum_{i=1}^{n} x_i^2 = 1$.

Define convergence in probability. Let $\{X_n\}$

- be a sequence of random variables and X be another random variable defined on the same probability space, show that if $X_n \xrightarrow{P} X$ as $n \to \infty$ then $g(X_n) \xrightarrow{P} g(X)$ as $n \to \infty$ for any continuous function g(.).
- iii) Distinguish between pointwise convergence and uniform convergence for a sequence of functions through an example.

[3]

- iv) Suppose (X, Y) follows a Bivariate Normal distribution with parameters 0,0, 1, 1, ρ . If q = P(XY > 0) then show that $\rho = \cos[(1-q)\pi]$.
- v) Show that sum of the coefficients of entries in the Lagranges interpolation formula is unity.
- 4. Attempt any **four** of the following questions:

 $10 \times 4 = 40$

- i) a) Show that the series $\sum_{n=1}^{\infty} \frac{\cos nx}{p}$ converges uniformly and absolutely if p > 1.
 - b) Show that the series $1+x+x^2+...=\sum_{k=0}^{\infty} x^k$ converges to $S(x)=\frac{1}{1-x}$ on [-a, a], 0 < a < 1.
 - c) Show that the series $\sum_{n=1}^{\infty} (x e^{-x})^n$ of functions converges uniformly on [0, 2].

30(Sc)

ii)

ii) a) Show that the sequence
$$\left\{\frac{nx}{1+n^2x^2}\right\}$$
 of functions is not uniformly convergent on any interval containing zero.

- b) Evaluate $\int_D xy \, dx \, dy$, where $D = \left\{ (x,y) \in \mathbb{R}^2 \mid ax^2 + by^2 + 2hxy \le r^2 \right\}$ with a, b, h, $r \in \mathbb{R}$ such that r > 0, a > 0 and $ab h^2 > 0$. 4+6=10
- iii) a) Let X and Y be random variables with means 0, variances 1 and correlation coefficient ρ . Show that

$$E\Big[\max\left(X^2,Y^2\right)\Big] \le 1 + \sqrt{1-\rho^2} \ .$$

b) Using a) show that, for random variables $X \ \ and \ \ Y \ \ with \ \ means \ \ \mu_X \ \ and \ \mu_Y \ ,$ variances σ_X^2 and σ_Y^2 , and correlation coefficient ρ

$$P[|X - \mu_x| \ge t\sigma_X \text{ or } |Y - \mu_y| \ge t\sigma_Y] \le \frac{1}{t^2} \{1 + \sqrt{1 - \rho^2}\}.$$

$$5 + 5 = 10$$

iv) State and prove weak law of large numbers by using Chebyshev's inequality. Also discuss the Bernoulli's theorem in this context.

Sc) [5] [Turn over]

- v) a) Let X and Y be jointly distributed random variables such that they are uniformly distributed over the region $R = \left\{ (x, y) : 0 < x, y < 1 \right\}.$ Find the conditional distribution of X given Y. Hence, find Cov(X, Y).
 - b) Let X and Y be jointly distributed random variables with joint p.d.f.

$$f(x, y) = \begin{cases} \frac{1+xy}{4} & \text{if } |x| < 1\\ 0 & \text{otherwise} \end{cases}$$

Show that X and Y are not independent but X^2 and Y^2 are independent.

5+5

vi) Explain the concept of partial correlation coefficient. Obtain a formula for $\rho_{12.34...p}$. What is the interpretation of $\rho_{12.34...p}$ =0? 2+7+1
