U.G. 3rd Semester Examination-2021 CHEMISTRY [HONOURS]

Course Code: CHEM-H-CC-T-05

Full Marks : 40 Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer any **five** questions from the following:

 $2 \times 5 = 10$

- a) Write down the units of viscosity coefficient.
- b) What do you mean by specific conductance?
- c) State the Kohlrausch's law of independent migration of ions.
- d) What is the value of the enthalpy of mixing $(\Delta_{mix}H)$ for perfect gases?
- e) State the Nernst's distribution law.
- f) Write down the de Broglie relation.
- g) What do you mean by Hamiltonian operator?
- h) What is the general form of the Heisenberg uncertainty principle?

a) i) What is the Poiseuille's law?

Answer any **two** questions:

ii) Explain the variation of viscosity of liquids and that of gases with temperature.

2+3

- b) i) Define the transport number. What is the relation between the limiting transport number and the mobility of ion?
 - ii) The molar conductivity and the limiting molar conductivity of 0.0100M $CH_{3}COOH \ (aq) \ at \ 298 \ K \ are \qquad \Lambda_{m} = 1.65 \\ mS \ m^{2}mol^{-1} \ and \ \Lambda_{m} = 39.05 \ mS \ cm^{2}mol^{-1} \\ respectively. \ Calculate \ pKa \ of \ the \ acid.$

2+3

- c) i) Explain the variation of chemical potential (μ) with temperature and pressure.
 - ii) Derive the van't Hoff equation related to the chemical equilibrium. 2+3
- d) i) Show that e^{ax} is an eigenfunction of the operator d/dx and find the corresponding eigenvalue. Show that e^{ax^2} is not an eigenfunction of d/dx.
 - ii) Is the function cos ax an eigenfunction of (a) d/dx, (b) d²/dx²? 3+2

2.

- 3. Answer any **two** questions: $10 \times 2 = 20$
 - a) i) State the Ostwald's dilution law with proper expression.
 - ii) How the limiting value of the molar conductivity of a solution is determined using Ostwald's dilution law? Explain with graphical representation.
 - The limiting molar conductivities of KCl, KNO₃, and AgNO₃ are 14.99 mS m² mol⁻¹, 14.50 mS m² mol⁻¹, and 13.34 mS m² mol⁻¹, respectively (all at 25°C). What is the limiting molar conductivity of AgCl at this temperature? 2+4+4
 - b) i) What is the mean activity coefficient?
 - ii) Derive an expression of the Gibbs energy of mixing of two liquids that form an ideal solution.
 - iii) The excess Gibbs energy of solutions of methylcyclohexane (MCH) and tetrahydrofuran (THF) at 303.15 K was found to fit the expression:

 G^{E} = RTx (1-x) {0.4857-0.1077(2x-1)+0.0191(2x-l)²}

where x is the mole fraction of the methylcyclohexane. Calculate the Gibbs energy of mixing when a mixture of 1.00 mol of MCH and 3.00 mol of THF is prepared.

1+3+6

- c) i) What is the standard enthalpy of a reaction for which the equilibrium constant is (a) doubled, (b) halved when the temperature is increased by 15 K at 310 K?
 - ii) The equilibrium constant of a reaction is found to fit the expression In K=A+B/T+C/T³ between 400 K and 500 K with A= -2.04,B = -1176 K, and C=2.1×107 K³, Calculate the standard reaction enthalpy and standard reaction entropy at 450 K.
- d) i) Suppose the speed of a projectile of mass 1.0 g is known to within 1µm s⁻¹. Calculate the minimum uncertainty in its position.
 - ii) Show that the operators for position and momentum do not commute.
 - iii) The ground-state wavefunction for a particle confined to a one-dimensional

box of length L is

$$\psi = \left(\frac{2}{L}\right)^{1/2} \sin\left(\frac{\pi x}{L}\right)$$

Suppose the box is 10.0 nm long. Calculate the probability that the particle is

- a) between x=4.95 nm and 5.05 nm,
- b) between x=1.95 nm and 2.05 nm,
- c) between x=9.90 nm and 10.00 nm,
- d) in the right half of the box,
- e) in the central third of the box. 3+2+5
