U.G. 3rd Semester Examination - 2021 MATHEMATICS

[HONOURS]

Course Code: MATH-H-CC-T-05

(Theory of Real Functions & Introduction to Metric Spaces)

Full Marks: 60

Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Symbols and notations have their usual meanings.

1. Answer any **ten** questions:

 $2 \times 10 = 20$

- i) If $f(x) = \frac{|x|}{x}$, $x \neq 0$ and $c \neq 0$ then find the value of |f(c) f(-c)|.
- ii) If f(x) and g(x) are differentiable functions such that f'(x) = 3x and $g'(x) = 2x^2$ then find $\lim_{x \to 1} \frac{[(f(x) + g(x)) (f(1) + g(1))]}{x 1}.$
- iii) Evaluate $\lim_{x\to 3} \left([x] \left[\frac{x}{3} \right] \right)$.
- iv) Show that there exists a root of $x + x \log x 3 = 0$ in (1,3).
- v) Examine the validity of Rolle's theorem for $f(x) = x(x+3)e^{\frac{-x}{2}}$ on [-3,0].

- vi) Find the extreme value of the function $f(x) = \frac{\log x}{x}$, in its domain.
- vii) Show that $\lim_{x\to\infty} \frac{[x]}{x} = 1$.
- viii) Examine whether the function defined by

$$f(x) = \begin{cases} x\cos\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 is differentiable at $x = 0$.

- Determine whether the set $S = \left\{1, \frac{1}{2}, \frac{1}{3}, \dots \dots \right\} \text{ is open or not with }$ respect to usual metric.
- x) Write the Statement of Darboux theorem for derivative of a function.
- xi) Determine whether the function $d(x,y) = |\sin(x-y)|$ where $x,y \in \mathbb{R}$ is a metric or not.
- xii) Let (X, d) be a discrete metric space. Prove that $\{x\}$ is an open subset of X for all $x \in X$.
- xiii) Let (X, d) be a metric space. Let $x, y \in X$, $x \neq y$. Prove that there exists open balls B_1 and B_2 in X so that $x \in B_1, y \in B_2$ such that $B_1 \cap B_2 = \emptyset$.
- xiv) The function defined by $f(x) = \begin{cases} 2x, & x \in \mathbb{Q} \\ 1-x, & x \in \mathbb{R} \mathbb{Q} \end{cases}$ Prove that f(x) is continuous at $x = \frac{1}{3}$ and discontinuous at other points.

- xv) Show that x < tanx in $0 < x < \pi/2$.
- 2. Answer any **four** questions: $5 \times 4 = 20$
 - a) Let $f: D \to \mathbb{R}$ be a function and a be a limit point of $D \subseteq \mathbb{R}$. Show that f is continuous at x = c if and only if for every sequence $\{x_n\}$ in D converging to c, the sequence $\{f(x_n)\}$ converges to f(c).
 - b) i) A function is defined on \mathbb{R} by $f(x) = \begin{cases} 1, & when & x \in \mathbb{Q} \\ 0, & when & x \in \mathbb{R} \mathbb{Q} \end{cases}$ where \mathbb{Q} is set of rational numbers. Prove that f is continuous at no point $c \in \mathbb{R}$.
 - ii) Give an example with proper justifications to show that a bounded function on a closed and bounded interval need not be continuous.
 - c) If a function f be differentiable on [0, 2] and f(0) = 0, f(1) = 2, f(2) = 1, then prove that f'(c) = 0 for some c in (0,2).
 - d) Let $f: I \to \mathbb{R}$ and $g: J \to \mathbb{R}$ be such that Image $f \subseteq J$, where I, J are intervals in \mathbb{R} . Let f be differentiable at c and g be differentiable at $f(c) = d \in J$. Show that $g \circ f: I \to \mathbb{R}$ is differentiable at c and $(g \circ f)/(c) = g/(c)(f(c))f/(c)$.

- e) If f(x + y) = f(x) + f(y) for all $x, y \in \mathbb{R}$ and is continuous at points of \mathbb{R} , then prove that f is uniformly continuous on \mathbb{R} .
- f) If a function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = |x| + |x 1| + |x 2| for all $x \in \mathbb{R}$, then find derived function f' and specify the domain of f'.
- 3. Answer any **two** questions from (a) to (d): $10 \times 2 = 20$
 - a) i) Let $f:[a,b] \to \mathbb{R}$ be continuous. Also, let $\sup_{x \in [a,b]} f(x) = M$, $\inf_{x \in [a,b]} f(x) = m$. Show that there is at least one $c \in [a,b]$ such f(c) = M and there is at least one $d \in [a,b]$ such f(d) = m.
 - Show that $f(x) = \frac{1}{1+x^2}$ is uniformly continuous on $(-\infty, \infty)$.
 - b) i) Prove that the set C[a, b] of all real valued functions continuous on the interval [a, b] with the function d defined by

$$d(f,g) = \int_{a}^{b} ((f(x) - g(x))^{2})^{\frac{1}{2}} dx \quad \text{is} \quad a$$

metric space.

ii) Show that $\frac{v-u}{1+v^2} < tan^{-1}v - tan^{-1}u < \frac{v-u}{1+u^2}, \text{ if } 0 < u < v.$ 5+5

(4)

[Turn over]

- c) i) Find the maximum and minimum values of $y = \sin x (1 + \cos x)$, $0 \le x \le 2\pi$.
 - ii) Let a function f be twice differentiable on [a, b] and f(a) = f(b) = 0 and f(c) < 0 for some c in (a, b). Prove that there exists at least one point ξ in (a, b) for which $f''(\xi) > 0$.
- d) i) Find Maclaurin's infinite series expansion for the function $f(x) = \log(1+x), -1 < x \le -1.$
 - ii) Use mean value theorem to prove that $\frac{1}{x} < \frac{1}{\log(1+x)} < 1 + \frac{1}{x}.$ 3
 - iii) In a metric space (X, d) show that arbitrary intersection of closed set is a closed set.

3
