KANDI RAJ COLLEGE

DEPARTMENT OF PHYSICS

Semester – I

Stream : Honours (Core)

Internal Evaluation-2022

PAPER CODE: PHY-HCC-T-01 (Mathematical Physics-I)

FULL MARKS: 10 ------

Answer any five questions

- 1. What is the value of the limit : $\lim_{x \to 0} \frac{(1 \cos 2x)^2}{x^4}.$ 2. Suppose $f(x) = \begin{cases} -6x 4, & x \le -1 \\ 3x^2, & x > -1 \end{cases}$ What can be said of the differentiability of f(x) at x = -1. 3. Solve $(x+1)\frac{dy}{dx} - y = e^{3x}(x+1)^2$.
- 4. Solve $x \frac{dy}{dx} + y = x^3 y^6$.
- 5. Solve $\frac{d^2y}{dx^2} + \frac{dy}{dx} 2y = 0$ for complementary function.
- 6. Solve $\frac{d^4y}{dx^4} + 4x = 0$ for complementary function.
- 7. Find Particular Integral of $(D^2 + 5D + 6)y = e^x$.

PAPER CODE: PHY-HCC-T-02 (M	FULL MARKS: 10			
	Answer any ten of the following questions		10X1 =10	
1. The period of an artificial	satellite in circular orbit is in	dependent of –		
(i) mass of the satellite	(ii) radius of the orbit	(iii) both of these	(iv) none of these.	
2. Moment of inertia of a sp	herical shell is—			
(i) $\frac{2}{3}$ M ² r ²	(ii) $\frac{3}{2}$ Mr ²	(iii) $\frac{2}{5}$ M ² r ²	(ii) $\frac{2}{3}$ Mr ²	
3. Gravitational potential ins	ide a spherical shell is –			
(i) Equal to that on the su	urface (ii) Greater than that	on the surface (iii) Zerc	o (iv) can not be determined	
4. A body appears to be sphe	erical to an observer at rest	relative to it. To a movi	ng observer, it will appear to be	

5X2 =10

(i) a circle	(ii) an ellipse	(iii) an oblate spheroid	k	(iv) none of them.		
5. Two photons approach each other . Their relative velocity will be—						
(i) Zero	(ii) less than c	ss than c (iii) more than c		(iv) equal to c		
6. The deflection of a freely falling body from a height of 100m at the 30 ⁰ N latitude is						
(i) 1.895	((ii) 18.95		(iv)0.1895		
7. The dimension of Poisson's ratio is—						
(i)[L]	(ii) Dimensionless	(iii)[L ⁻¹]		(iv)[L ²]		
8.When the velocities get interchanged after collision of two bodies , the collision is $-$						
(i) perfectly elas	tic (ii) nearly	elastic (iii) inelastic	c iv	iv) none of the above		
9. For a small displacements the restoring force is given by $F = -sx$, the reciprocal of s is called—						
(i) spring consta	nt (ii) compliance	(ii) compliance (iii) displacement		(iv) reactance		
10. Two masses m_1 =85 gm and m_2 =200 gm are constrained to move with velocities u_1 =6.48 cm/s and u_2 =6.78 cm/s						
respectively in a horizontal plane, the velocity of centre of mass is –						
(i) -2.82 cm/s	(ii) -28.2 cm/s	(iii) -0.282 cm/s		(iv)-282 cm/s.		
11. Moment of inertia is a—						
(i) vector	(ii) scalar		(iii) tensor			

PAPER CODE: PHY-HGE-T-01

Answer any two questions.

1. State Kepler's laws of planetary motion. Explain the idea behind global positioning system.

- 2. Deduce an expression for the energy of a harmonic oscillator of mass m, amplitude A and frequency v. At what displacement is the energy half kinetic and half potential?
- 3. Write down Einstein's postulates of special theory of relativity. What is meant by length contraction and time dilation?

FULL MARKS: 10

(5×2=10)