U.G. 1st Semester Examination - 2021 PHYSICS [HONOURS]

Course Code: PHY-H-CC-T-2

(Mechanics)

Full Marks : 40 Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP-A

1. Answer any **five** questions from the following:

 $2 \times 5 = 10$

- a) Show that mutually interacting forces on a system of particles have no effect on its total linear momentum.
- b) A solid sphere and a solid cylinder having the same mass and same radii roll down an inclined plane without slipping. Show that the sphere will reach the bottom first.
- c) 'In streamline flow of a Newtonian fluid two streamlines never intersect'- Explain.

- d) Prove that the areal velocity of a particle moving under a central force field is constant.
- e) What is the rotational period of a binary star consisting of two equal masses, M and separated by distance L?
- f) Lifetime of muon in its rest frame is 2×10^{-6} s. How, then, a muon produced at a height of 4 km can reach the surface of the earth?
- g) Consider two events A and B in an inertial frame S with four coordinates (ct, x, y, z)=(13,12,5,0) and (0, 0, 3, 4) respectively. In another inertial frame S' moving with a velocity $\frac{c}{2}$ along the common x-axis. What should be the separation ds^2 between A and B?

[Use the metric convention (1, -1, -1, -1)]

h) When two mutually perpendicular simple harmonic motions given by $x = 2\cos(pt)$ and $y = 2\cos(2pt)$ superimpose on a particle, what will be the shape of the path followed by that particle?

GROUP-B

Answer any **two** questions:

 $5 \times 2 = 10$

[Turn over]

Let S' be a reference frame which is rotating with respect to a fixed frame S with an angular velocity $\vec{0}$. Prove that for an arbitrary vector \vec{A}

$$\frac{d\vec{A}}{dt} = \frac{d'\vec{A}}{dt} + \vec{\omega} \times \vec{A}$$

where $\frac{d}{dt}$ and $\frac{d'}{dt}$ refer to time derivatives with respect to S and S' frames, respectively.

- b) Show that the total angular momentum of a system of particles about any arbitrary point is the sum of angular momentum due to a single particle of the total mass of the system situated at the centre of mass and the angular momentum of the particles about the centre of mass.
- A pipe of varying diameter is used to lift water by 7m. The area of cross-section of the pipe at the base is 125 cm² and the pressure here is 2.5×10^5 Pa. The area of cross-section of the pipe at the top is 25 cm². The rate of flow of water is 3×10⁻² m³/sec. Calculate the pressure of water at the top, neglecting energy losses.

(3)

- A rod of proper length L_0 is at rest in an inertial frame S'. The rod is inclined at an angle θ' with respect to the x'-axis of S'. If S' moves with a uniform velocity v relative to another inertial frame ,S along the common x-axis, show that
 - the length of the rod in S-frame is

$$L = L_0 \left(\frac{\cos^2 \theta'}{\gamma^2} + \sin^2 \theta' \right)^{\frac{1}{2}}$$

the angle of inclination of the rod in Sframe is

$$\theta = \tan^{-1}(\gamma \tan \theta'),$$
where $\gamma = (1 - v^2/c^2)^{-1/2}$

3+2

GROUP-C

Answer any **two** questions:

 $10 \times 2 = 20$

Distinguish between amplitude resonance and 3 velocity resonance for forced harmonic oscillation.

(4)

Derive an expression for the average power supplied to a forced oscillator by an external driving force $F = F_0 \cos \omega t$.

205/Phs.

- c) Set up Euler's equation for an incompressible fluid and establish Bernoulli's equation of fluid motion stating the assumptions used. 2+3+5
- 4. a) Consider 4-momentum, $p^{\mu} = \left(\frac{E}{C}, \vec{p}\right)$ in an inertial frame S.

 Write down the Lorentz transformation equations of P^{μ} in an inertial frame S', moving along common x-axis w.r.t. S.
 - b) Show that for any 4-vector A^{μ} is invariant under Lorentz transformation.
 - c) Find $P^{\mu}P_{\mu}$ in the rest frame of the particle.
 - d) Show that 4-force and 4-momentum are orthogonal to each other. 2+3+2+3
- 5. a) A particle is moving in a plane in such a way that its polar co-ordinates are given by r = 2t+3 and $\theta = 3t-t^2$. Obtain the radial and transverse components of instantaneous acceleration.
 - b) Given $\vec{F} = -r\hat{r}$ is a conservative force field. Find the corresponding scalar potential.
 - c) A rigid body is rotating under the influence of an external torque \vec{N} . If the angular velocity is $\vec{\omega}$ and kinetic energy is T, show that

(5)

$$\frac{dN}{dt} = \vec{N} \cdot \vec{\omega}$$

when the axes of the body co-ordinates are taken as principal axes.

- d) A copper wire of diameter *lmm*. and length 3 *meters* has Young's modulus 12.5×10¹¹ dynes per sq.cm., If a weight of 10kg. is attached to one end, what extension is produced? If the Poisson's ratio is 0.26, what lateral compression is produced?

 2+3+3+2
- 6. a) Show that the total angular momentum of a system of particles about any arbitrary point is the sum of angular momentum due to a single particle of total mass of the system situated at the centre of mass and the angular momentum of the particles about the centre of mass.
 - b) Prove that total energy of a particle of mass 'm' acted upon by a central force is given by,

$$E = \frac{L^2}{2m} \left[u^2 + \left(\frac{du}{d\theta} \right)^2 \right] + V(r)$$

where L is the angular momentum, V(r) is the potential energy, $u = \frac{1}{r}$, r and θ being the polar co-ordinates. 5+5

[Turn over]

205/Phs. (6)