206/Phs.

UG/1st Sem/PHY-H-GE-T-01(A)&(B)/21

U.G. 1st Semester Examination - 2021

PHYSICS

[HONOURS]

Generic Elective Course (GE)

Course Code: PHY-H-GE-T-01(A)&(B)

Full Marks: 40

Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer all the questions from selected Option.

OPTION-A

PHYS-H-GE-T-01(A)

(Electricity & Magnetism)

1. Answer any **five** questions:

 $2 \times 5 = 10$

- a) Calculate the force on an electron which enters with a velocity $2\hat{\imath}+3\hat{\jmath}$ m/sec into a region containing an electric field of intensity $3\hat{\imath}+6\hat{\jmath}+2\hat{k}$ volts/metre and a magnetic field of $2\hat{\imath}+3\hat{k}$ Tesla.
- b) A point charge 'q' is kept at a corner of a cube.

 Determine the flux of the electric field due to

'q' through the three surfaces of the cube which do not meet at 'q'.

- c) A point charge Q=30×10⁻⁹ C is located at the origin in Cartesian coordinates. Find the electric flux density \vec{D} at a point (1,3,4).
- d) $(x,y) = \alpha \beta(x^2 + y^2) \gamma \ln \sqrt{x^2 + y^2}$ where α, β and γ are constants. Find the charge density in this region.
- If the polarisation in a dielectric is given by $\vec{P} = ax^2 \hat{x} + by \hat{y}$, obtain the volume charge density.
- f) Show that dipole moment of a charge distribution is independent of origin chosen if total charge is zero.
- g) An electron is moving in a circular orbit of radius r with speed v. If we consider that it constitutes a steady current, find its magnitude.
- h) If magnetic vector potential $\vec{A} = e^{-x} \sin y \,\hat{\imath} + (1 + \cos y) \hat{\jmath} \,, \text{ calculate the magnetic induction.}$

2. Answer any **two** questions:

 $5 \times 2 = 10$

a) A long hollow metal cylinder with inner radius 'a' and outer radius 'b' has a length'l'.

Show that the self-inductance of the cylinder is $L = \frac{l\mu_0}{2\pi} \ln \frac{b}{a}$

Show that, a current placed in a magnetic field \vec{B} experiences a force $\vec{F} = I \vec{dl} \times \vec{B}$, where the symbols have their usual meanings.

Find the inductance in Henry of a straight coil of 100 turns, wound on 25cm long paper tube having 4cm radius.

2+2+1

b) State and obtain the integral form of Gauss's law in a dielectric.

Write down the boundary conditions at the interface of two dielectrics of permittivities \in_1 and \in_2 .

Two parallel plate capacitors, each of capacitance $40\mu F$, are connected in series. The space between the plates of one capacitor is filled with a dielectric material of dielectric constant K=4. What is the equivalent capacitance of the system? 2+1+2

c) A charged particle moves with uniform velocity $\vec{v} = 4\hat{\imath} \text{ m/s}$ in a region where $\vec{E} = 20\hat{\jmath} \text{ V/m}$ and $\vec{B} = B_0 \hat{k} \text{ Wb/}m^2$. Determine B_0 such that the velocity of the particle remains constant. Calculate the magnetic field at a distance r from the axis of a very long solenoid with radius R and having N turns per unit length, and carrying a steady current I.

Two long parallel wires each carrying 1 A cunent and placed 10 cm apart. What is the force per unit length between the two wires? 2+2+1

d) If A is a constant vector and $\mathbf{r} = \mathbf{i}\mathbf{x} + \mathbf{j}\mathbf{y} + \mathbf{k}\mathbf{z}$ prove that $\nabla(\mathbf{r} \cdot \mathbf{A}) = \mathbf{A}$

If $\mathbf{F} = (\mathbf{x} + 2\mathbf{y})\mathbf{i} + (2\mathbf{x}^2 + \mathbf{x}\mathbf{y})\mathbf{j}$ evaluate the line integral $\int \mathbf{F} \cdot d\mathbf{r}$ along the curve c in the xy plane having equation $y = x^2$ from the point (0,0) to (1,1).

3. Answer any **two** questions: $10 \times 2 = 20$

(4)

a) Show that the electric and magnetic energy densities are equal in the propagation of electromagnetic waves in vacuum.

Derive the continuity equation $\nabla . \mathbf{J} = -\frac{\partial \rho}{\partial t}$ from Maxwell's equations.

- Discus the origin of the displacement current in Maxwell's equations. 4+4+2
- An electromagnetic wave is travelling in a linear, homogeneous and isotropic conducting medium where there are no charges and external currents. Derive the wave equations for the fields. Apply Gauss theorem calculate the electric field due to a uniformly charged sphere of radius R at points inside and outside the sphere. Represent the above result graphically. 4+4+2
- Calculate the electrostatic potential in free c) space due to a dipole. For a uniformly charged disc of radius a, find the electric field at a distance h(h >> a) from the centre along the axis of the disc.
 - Show that the vector $\vec{E} = yz\hat{\imath} + zx\hat{\jmath} + xy\hat{k}$ represents an electric field. Find the corresponding electrostatic potential V, given that $V = V_0$ at x=y=z=0. 4+3+3
- Starting with the expression $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$, where d) the symbols have their usual meanings, show that, the line integral of the magnetic induction around a closed path is equal to μ_0 times the total current enclosed by the path.

Determine the force acting on an electric dipole placed within an inhomogeneous electric field.

Two magnetic media are separated by a plane interface. Establish a relation of angles between the normal to the boundary and the B fields on either side 4+3+3

OPTION-B

PHYS-H-GE-T-01(B)

(Mechanics)

Answer any **five** questions: 1

- $2 \times 5 = 10$
- Find the unit vector perpendicular to $\vec{A} = 4\hat{i} - \hat{j} + 3\hat{k}$, and $\vec{B} = -2\hat{i} + \hat{j} - 2\hat{k}$.
- What is homogeneous differential equation? Give an example of a second order homogeneous differential equation with constant coefficients.
- Define angular velocity and angular momentum. Write down their units
- If the kinetic energy and the potential energy of a particle in a SHM are equal, find the displacement of the particle from its equilibrium position.

- What is torsional modulus? e)
- State Hooke's law of elasticity. f)
- Write down the postulates of special theory of g) relativity.
- What is geosynchronous orbit?
- Answer any **two** questions: $5 \times 2 = 10$ 2.
 - Find the primitive of the differential i) a) equation $\frac{dy}{dx} = \frac{2x-5y+3}{2x+4y-6}$.
 - ii) Find the general solution of the differential equation $\frac{d^2x}{dt^2} - 6\frac{dx}{dt} + 9x = 0$. $2\frac{1}{2} + 2\frac{1}{2}$
 - If y, k, and σ represent Young's modulus, Bulk **b**) modulus and Poisson's ratio respectively, prove that $Y = 3k(1-2\sigma)$. State the limiting values of σ . 4+1
 - c) i) Write down the Lorentz transformation formulae and explain length contraction.
 - Two spaceships with equal speeds u= ii) 0.68c move in opposite directions. What will be the relative speed of the spaceships with respect to each other? 3+2
 - Write down the differential equation of SHM. d) Show that the average kinetic and average potential energies of a particle in SHM are half the total energy. 1 + 4

- 3. Answer any **two** questions:
 - Show that the central force is conservative. a) Prove that the areal velocity of the line joining the centre of force and the particle is a constant of motion
 - Deduce Newton's law of gravitation from ii) Kepler's laws of planetary motion.

 $10 \times 2 = 20$

- Given that the distance of the planet Jupiter from the Sun is 5.20 times the earth's distance, find the period of Jupiter's revolution round the sun in earth (2+3)+3+2years.
- What is torsional oscillation? Discuss b) i) how the modulus of rigidity of the material of a long wire can be determined, using torsional oscillation.
 - Describe Searle's method for the ii) determination of Young's modulus and rigidity modulus. (2+3)+5
- If $\vec{A} = 5u^2\hat{i} 2u\hat{j} u^3\hat{k}$ and c) $\vec{R} = \sin u \hat{i} - \cos u \hat{i}$. Find $\frac{d}{du}(\vec{A}.\vec{B})$ and $\frac{d}{du}(\vec{A} \times \vec{B})$

(8)

- ii) Prove that $\vec{A}. (\vec{B} \times \vec{C}) = \vec{B}. (\vec{C} \times \vec{A}) = \vec{C}. (\vec{A} \times \vec{B})$
- iii) A particle moves along the curve $x = 2t^2$, $y = t^2-4t$, z = 3t-5 at any time t>0. Find the components of the velocity and acceleration at t = 1 in the direction $4\hat{\imath} 3\hat{\jmath} + \hat{k}$.
- d) i) What are the inertial and non-inertial frames of reference? Show that the Newton's 2nd law of motion is invariant in inertial frame of reference.
 - ii) Define centre of mass of a system of particles. Calculate the kinetic energy and potential energy of a system of particles.

 (2+3)+1+4
