737/1/Math.

UG/6th Sem/MATH-H-DSE-T-03A/22

U.G. 6th Semester Examination - 2022

MATHEMATICS

[HONOURS]

Discipline Specific Elective (DSE)
Course Code: MATH-H-DSE-T-03A
(Fuzzy Set Theory)

Full Marks: 60

Time: $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

The symbols and notations have their usual meanings.

1. Answer any **ten** questions:

 $2 \times 10 = 20$

- i) If A = [-3, 2] and B = [7, 9], find B A.
- ii) Find the distance between [2,6] and [5,8].
- iii) Find the support of the fuzzy number $A(x) = -x^2 + 6x 8$.
- iv) Give an example of a normal fuzzy set.
- v) Define fuzzy number.
- vi) Find all strong α -cuts of the fuzzy set $A = \frac{0.5}{x_1} + \frac{0.7}{x_2}.$

[Turn Over]

- vii) When a fuzzy set is said to be convex?
- viii) Give an example of a non-convex fuzzy set.
- ix) Find standard fuzzy complement of the set $A = \frac{0.3}{x_1} + \frac{0.9}{x_2}.$
- Show that $A \cup A^c = X$ does not always hold for fuzzy set, A defined on X.
- xi) Give an example of a symmetric binary fuzzy relation.
- xii) Find the relationship between max-min composition and relational join.
- xiii) From the nature of a relational matrix how the relation can be identified as reflexive and symmetric?
- xiv) Give an example of a fuzzy similarity relation with justifications.
- xv) State true or false with justifications: lntersection of two normal fuzzy sets is normal.
- 2. Answer any **four** questions: $5 \times 4 = 20$
 - Check whether distributive property for interval numbers holds or not.
 - ii) Find the standard max-min composition $P \circ Q$ of the following two binary fuzzy relations P and Q:

737/1 Math.

(2)

$$P = \begin{bmatrix} a & b & c & \alpha & \beta \\ 1 & 0.6 & 0.2 & 0 \\ 2 & 0.3 & 0 & 0 \\ 0 & 0.9 & 0.7 \\ 4 & 0.5 & 0 & 0.2 \end{bmatrix} \text{ and } Q = \begin{bmatrix} a & 0.1 & 0.2 \\ 0.8 & 0 \\ c & 0.5 & 0.6 \end{bmatrix}.$$

iii) Find the transitive max-min closure of the fuzzy relation:

$$R = \begin{bmatrix} 0.7 & 0.5 & 0 & 0.5 \\ 0 & 0 & 0.8 & 1 \\ 0 & 0.4 & 0 & 0.4 \\ 0 & 0.4 & 0.8 & 0 \end{bmatrix}$$

iv) Represent the following fuzzy set in terms of union of special fuzzy sets using α - cuts:

$$A = 0.8/x_1 + 0.5/x_2 + 0.4/x_3 + 1/x_4 + 0.3/x_5$$
.

- v) Establish the proper inclusion relationship between $\bigcap_{i\in I}^{\alpha+}A_i$ and $\alpha^+(\bigcap_{i\in I}A_i)$. Also show that the reverse inclusion of the established relation does not hold, in general.
- vi) If R is a reflexive binary fuzzy relation, prove that $R \subset R \circ R$.
- 3. Answer any **two** questions: $10 \times 2 = 20$

(3)

i) Using extension principle define f(A). Find the relationship between ${}^{\alpha}f(A)$ and $f({}^{\alpha}A)$. Justify whether those are equal. 2+5+3

[Turn Over]

ii) Let A, B be two fuzzy numbers whose membership functions are given by

$$A(x) = \begin{cases} \frac{x+2}{2} & \text{if } -2 \le x \le 0\\ \frac{2-x}{2} & \text{if } 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

and

$$B(x) = \begin{cases} \frac{x-2}{2} & \text{if } 2 \le x \le 4\\ \frac{6-x}{2} & \text{if } 4 \le x \le 6\\ 0 & \text{otherwise} \end{cases}$$

Calculate the fuzzy number B - A and AB.

4+6

iii) Show that the transitive closure of the following fuzzy relation represents an equivalence relation. Find partition tree of that equivalence relation.

6+4

$$R = \begin{bmatrix} 1 & 0 & 0.9 & 0 & 0.7 & 0.9 \\ 0 & 1 & 0 & 0.7 & 0 & 0.6 \\ 0.9 & 0 & 1 & 0.9 & 0 & 0 \\ 0 & 0.7 & 0.91 & 0 & 0 \\ 0.7 & 0 & 0 & 0 & 1 & 0.7 \\ 0.9 & 0.6 & 0 & 0 & 0.7 & 1 \end{bmatrix}.$$

737/1 Math.

(4)