739/Math. UG/6th Sem./MATH-G-SEC-T-04(A)&(B)/22

U.G. 6th Semester Examination - 2022 MATHEMATICS

[PROGRAMME]

Skill Enhancement Course (SEC)

Course Code: MATH-G-SEC-T-04(A)&(B)

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer all the questions from selected Option.

OPTION-A

MATH-G-SEC-T-04A

(Probability and Statistics)

- 1. Answer any **five** questions :
- $2 \times 5 = 10$
- a) Find the probability of getting at least two heads in three throws of a coin.
- b) Prove that F(x)-F(x-0)=P(X=x), where F is a continuous probability distribution function of a random variable X.

- c) Define probability density function for continuous random variable and prove the relation $F(x) = \int_{-\infty}^{x} f(t) dt$ where F and f denote probability distribution and probability density function respectively.
- d) Find the mathematical expectation of the sum of points on *m* dice.
- e) Find moment generating function of a random variable *X* whose pdf is

$$f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & \text{elsewhere} \end{cases}$$

f) Find the probability distribution function F(x) of a random variable X whose probability density function is given by

$$f(x) = \begin{cases} 3x^2, & 0 < x < 1 \\ 0, & \text{elsewhere} \end{cases}$$

- g) Let (X, Y) be two dimensional random variables and suppose that X and Y are independent. Then prove that E(XY) = E(X)E(Y).
- h) The probability, density function of a random variable is defined by

$$f(x) = \begin{cases} 6x(1-x), & 0 < x < 1 \\ 0, & \text{elsewhere} \end{cases}$$

Evaluate $P\left(X > \frac{2}{3}\right)$.

- 2. Answer any **two** questions: $5 \times 2 = 10$
 - a) A random variable X has the distribution given by $P(X = k) = 2^{-k}, k = 1, 2, ...$ Show that E(X) = Var(X) = 2.
 - b) The bivariate random variable has the pdf $f(x,y) = \begin{cases} kx^2 (8-y)x < y < 2x, \ 0 \le x \le 2 \\ 0, \text{ elsewhere} \end{cases}$

Find k, the marginal probability density functions of X and Y and also the conditional

pdfs
$$f_{\frac{x}{y}}\left(\frac{x}{y}\right)$$
, $f_{\frac{y}{x}}\left(\frac{y}{x}\right)$.

- c) Find the moment generating function of a continuous probability distribution, whose density is $\frac{1}{2}x^2e^{-x}$, $0 < x < \infty$ and deduce the value of the mean and variance.
- d) Let the probability density function of a random variable X is given by $f(x) = \begin{cases} c(4x 2x^2), & 0 < x < 2 \\ 0, & \text{otherwise} \end{cases}$

- i) find the value of c,
- ii) $P\left\{\frac{1}{2} < x < \frac{3}{2}\right\} = ?$
- 3. Answer any **two** questions:

 $10 \times 2 = 20$

a) i) The joint probability density function of the random variable X and Y is given by

$$f(x,y) = \begin{cases} k(1-x-y)x \ge 0, & y \ge 0, x+y \le 1\\ 0, & \text{otherwise} \end{cases}$$

where k is a constant. Find the marginal probability density functions, the mean value of y, when $x = \frac{1}{2}$, the covariance of

X and Y. 5

- ii) Find Mode and Median of the Binomial (n, p) distribution. 5
- b) i) Let X be a continuous random variable with probability density function f given by

$$f(x) = \begin{cases} ax, 0 \le x \le 1 \\ a, 1 \le x \le 2 \\ -ax + 3a, 2 \le x \le 3, \\ 0, & \text{elsewhere} \end{cases}$$

739/ Math. (3) [*Turn Over*]

739/ Math.

(4)

Determine the constant a. Determine the cumulative distribution function F and sketch its graph. 2+3+2

ii) If X has a gamma distribution with parameters $\alpha(>0)$ and $\lambda(>0)$ then show that the characteristic function

$$\theta(t) = \left(1 - \frac{it}{\lambda}\right)^{-\alpha}.$$

- c) i) A bag contains 5 balls and it is not known how many of these are white. Two balls are drawn and are found to be white. What is the probability that all are white? 5
 - ii) If the moment generating function of a random variable W is $M(t)=(1-7t)^{-20}$, find the pdf, mean and variance of W. 2
 - iii) If the moment-generating function of X is $M(t) = \frac{e^{5t} e^{4t}}{t}$, $t \neq 0$ and M(0) = 1, find (A) E(X) (B)Var(x) and (C) $p(4.2 < x \le 4.7)$.
- d) i) Determine the value of the constant k, such that the function f(x,y), given by

$$f(x,y) = \begin{cases} k \frac{1+x+y}{(1+x)^4 (1+y)^4}, & 0 \le x, y < \infty \\ 0, & \text{elsewhere} \end{cases}$$

is a probability density function of a bivariate distribution (X, Y). Also find the marginal distribution of X and Y.

5

ii) If X is uniformly distributed over (0,12). calculate the probability that (A) X < 2, (B) X > 8, (C) 2 < X < 9.

OPTION-B

MATH-G-SEC-T-04B

(Boolean Algebra)

- 1. Answer any **five** questions:
- $2 \times 5 = 10$
- a) Is \mathbb{Z} a poset under the relation $a \leq b$ if a|b?
- b) What do you mean by a chain? Give an example.
- Give an example of an ordered set P in which there are three elements x, y, z such that $\{x, y, z\}$ is an antichain.
- d) Give an example of a poset which has exactly one maximal element but does not have a greatest element.
- e) Define latice homomorphism with an example.
- f) If L is a la tice and $a,b \in L$ then show that $a \lor (a \land b) = a$.
- g) What is a distributive lattice? Give an example.
- h) Give an example of a lattice which is not Boolean algebra.
- 2. Answer any **two** questions: $5 \times 2 = 10$
 - a) Prove that any finite lattice is bounded. Find a lattice without a zero and a unit eletment.

3+2

b) Show that the inverse of a lattice isomorphism is also a lattice isomorphism. 5

Show that (*B*, *gcd*, *lcm*) is a Boolean algebra if *B* is the set of all positive divisors of 110.

5

- 3. Answer any **two** questions: $10 \times 2 = 20$
 - a) i) Suppose that in a poset $b \lor c, a \lor (b \lor c)$ and $a \lor b$ exist. Prove that $(a \lor b) \lor c$ exists and that $a \lor (b \lor c) = (a \lor b) \lor c$.
 - ii) Let f be a monomorphism from the lattice L into the lattice M. Show that L is isomorphic to a sublattice of M. 5
 - b) i) In any lattice L, prove that $((x \wedge y) \vee (x \wedge z)) \wedge ((x \wedge y) \vee (y \wedge z)) = x \wedge y$ for all $x, y, z \in L$.
 - ii) Show that the closed elements in a closure system of a complete lattice form a complete lattice.
 - c) i) Simplify the Boolean polynomial xy' + x(yz)' + z.
 - Find the conjunctive normal form of $(x_1 + x_2 + x_3)(x_1x_2 + x_1'x_3)'$ 4+6
